HumanEval/126

 
def is_sorted(lst):
    '''
    Given a list of numbers, return whether or not they are sorted
    in ascending order. If list has more than 1 duplicate of the same
    number, return False. Assume no negative numbers and only integers.

    Examples
    is_sorted([5]) ➞ True
    is_sorted([1, 2, 3, 4, 5]) ➞ True
    is_sorted([1, 3, 2, 4, 5]) ➞ False
    is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
    is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
    is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
    is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
    is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
    '''
 

solution

 

    count = dict()
    for x in lst:
        if x not in count: count[x] = 0
        count[x] += 1
        if count[x] > 2: return False
    return lst == sorted(lst)

 

base input

 [[[5]], [[1, 2, 3, 4, 5]], [[1, 3, 2, 4, 5]], [[1, 2, 3, 4, 5, 6]], [[1, 2, 3, 4, 5, 6, 7]], [[1, 3, 2, 4, 5, 6, 7]], [[]], [[1]], [[3, 2, 1]], [[1, 2, 2, 2, 3, 4]], [[1, 2, 3, 3, 3, 4]], [[1, 2, 2, 3, 3, 4]], [[1, 2, 3, 4]]] 

plus input

 [[[1, 2, 3, 4, 5, 6, 7, 8]], [[8, 7, 6, 5, 4, 3, 2, 1]], [[1, 2, 2, 2, 2, 3, 4]], [[1, 1, 2, 2, 3, 3, 4]], [[1, 2, 3, 3, 3, 3, 3]], [[3, 3, 3, 3, 2, 2, 2, 2, 1, 1]], [[1, 1, 2, 3, 4]], [[4, 3, 2, 1]], [[1, 2, 2, 3, 4, 4, 5]], [[1, 0, 2, 3, 4]], [[1, 1, 2, 3, 5]], [[4, 3, 2]], [[4, 1, 3, 2]], [[1, 0, 2, 3]], [[1, 1, 2, 3, 4, 4]], [[1, 2, 3, 4, 5, 6, 7, 4, 8, 8]], [[8, 7, 6, 5, 4, 1, 3, 2]], [[8, 6, 5, 4, 3, 2, 1]], [[1, 1, 2, 2, 3, 3, 5, 4]], [[8, 6, 4, 3, 2, 1, 6]], [[5, 3, 2]], [[1, 2, 3, 6, 4, 5, 6, 7, 4, 8, 8]], [[1, 2, 3, 4, 5, 6, 4, 8]], [[8, 7, 6, 5, 4, 3, 2, 1, 5]], [[1, 2, 3, 3, 3, 3, 3, 3]], [[8, 8, 6, 5, 4, 3, 2, 1]], [[8, 8, 6, 5, 7, 6, 2, 1]], [[8, 7, 6, 5, 4, 3, 2, 6, 5]], [[8, 8, 6, 5, 4, 2, 2, 1, 8, 4]], [[8, 6, 8, 6, 5, 4, 3, 2, 1]], [[8, 8, 6, 5, 4, 2, 2, 1, 8, 4, 5, 4]], [[1, 1, 2, 2, 2, 3, 4]], [[8, 1, 6, 8, 6, 5, 4, 3, 2, 1]], [[8, 7, 4, 3, 2, 6, 5]], [[1, 0, 2, 4, 4]], [[1, 2, 3, 4, 5, 6, 7, 4, 8, 8, 2]], [[1, 2, 1, 2, 2, 3, 3, 5, 4]], [[3, 1, 3, 2]], [[1, 1, 2, 2, 2, 3, 4, 3]], [[4, 3, 2, 4, 3]], [[8, 8, 6, 5, 4, 3, 2, 1, 6]], [[1, 2, 2, 3, 7, 4, 5]], [[8, 6, 8, 6, 5, 4, 3, 2, 8, 1]], [[1, 2, 2, 2, 3, 3, 5, 4]], [[8, 7, 4, 3, 2, 6, 5, 6]], [[7, 4, 3, 2, 6, 5, 6]], [[0, 3, 2]], [[8, 1, 6, 2, 8, 6, 5, 4, 3, 2, 1]], [[1, 5, 5, 2, 3, 4, 5, 6, 7, 8]], [[8, 8, 6, 5, 4, 5, 1]], [[8, 8, 5, 4, 2, 2, 1, 8, 4, 5, 4]], [[4, 1, 2, 3, 4, 5, 6, 7, 8]], [[1, 2, 2, 3, 4, 5, 4, 5]], [[1, 2, 1, 5, 2, 6, 3, 8, 5, 4]], [[8, 8, 6, 5, 4, 2, 2, 1, 8, 4, 5, 4, 5]], [[1, 8, 6, 5, 4, 3, 2, 1]], [[1, 2, 2, 3, 5, 4, 5]], [[0, 2, 3, 4]], [[1, 2, 2, 3, 7, 4, 5, 2]], [[8, 6, 6, 5, 4, 3, 2, 8, 1, 4]], [[1, 8, 6, 5, 4, 2, 1]], [[8, 6, 8, 6, 5, 8, 4, 3, 2, 8, 1, 4]], [[1, 2, 2, 3, 4, 5, 5]], [[8, 8, 6, 5, 4, 3, 1]], [[0, 3]], [[2]], [[8, 7, 6, 5, 4, 3, 2, 6, 5, 2]], [[1, 0, 2, 4, 3]], [[1, 2, 3, 4, 5, 6, 7, 4, 8, 8, 1, 6]], [[5, 5, 5, 2, 3, 4, 5, 6, 8]], [[1, 8, 6, 5, 8, 3, 2, 1]], [[8, 7, 6, 5, 4, 3, 2, 1, 5, 1]], [[1, 2, 3, 4]], [[1, 2, 2, 2, 3, 3, 5, 4, 1]], [[8, 8, 6, 5, 4, 3, 2, 1, 4]], [[8, 7, 6, 5, 4, 3, 3, 1, 5]], [[8, 8, 6, 5, 4, 2, 2, 1, 8, 4, 5, 4, 6]], [[1, 2, 4, 3, 3, 3, 3, 7]], [[1, 2, 4, 3, 3, 3, 2, 3, 7]], [[5, 5, 5, 2, 3, 4, 6, 6, 8]], [[6, 3, 2, 4, 3]], [[8, 8, 5, 4, 2, 2, 1, 8, 4, 5, 4, 5]], [[8, 6, 8, 5, 4, 2, 1]], [[1, 2, 3, 3, 3, 3, 3, 1]], [[8, 8, 6, 5, 4, 3, 2, 1, 7]], [[1, 2, 2, 2, 3, 3, 5, 4, 1, 2]], [[0, 2, 2, 3, 4, 4, 5]], [[8, 8, 5, 4, 2, 2, 1, 8, 4, 5, 1, 5, 1]], [[5, 8, 7, 6, 4, 3, 2, 1, 5, 1]], [[1, 2, 2, 3, 5, 5]], [[5, 0, 2, 3, 0, 5, 6, 0, 8]], [[8, 4, 3, 2, 1, 6, 1]], [[8, 6, 5, 4, 2, 2, 1, 8, 4, 5, 4]], [[5, 8, 6, 4, 4, 2, 1, 5, 1, 6]], [[5, 4, 3, 2, 1]], [[1, 2, 1, 2, 2, 3, 3, 5, 1, 4]], [[8, 6, 5, 8, 3, 2, 1]], [[5, 0, 2, 3, 0, 5, 6, 0, 8, 0]], [[1, 1, 1, 2, 3, 4, 4]], [[5, 5, 5, 2, 3, 4, 6, 8]], [[0, 0, 2, 2, 4, 4, 4]], [[1, 1, 1, 2, 2, 2, 3, 3, 3]], [[1, 2, 2, 2, 2, 2, 2, 3]], [[1, 2, 2, 2, 3, 3, 3, 3, 3]], [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10]], [[1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2]], [[1, 1, 1, 1, 1, 1]], [[7, 3, 10, 8, 2]], [[2, 3, 4, 4, 4, 4, 4, 4, 5, 6]], [[1, 2, 3, 5, 4, 6, 7, 8, 9, 10, 11]], [[1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2]], [[1, 1, 4, 1, 1, 1, 1]], [[0, 0, 2, 4, 4, 4]], [[12, 1, 1, 3, 5, 4, 6, 7, 8, 9, 10, 11]], [[7, 3, 5, 10, 8, 2, 2]], [[1, 2, 2, 2, 2, 2, 1, 2, 3]], [[2, 3, 4, 4, 4, 4, 4, 4, 4, 5, 6]], [[1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 0, 2, 2, 2, 2]], [[1, 2, 3, 5, 4, 6, 7, 8, 9, 11]], [[1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2]], [[1, 1, 1, 1, 9, 1]], [[1, 2, 2, 2, 2, 2, 2, 1]], [[1, 2, 3, 5, 4, 6, 3, 7, 8, 9, 11]], [[1, 2, 3, 5, 4, 5, 6, 7, 8, 9, 10, 10]], [[1, 2, 2, 2, 2, 2, 1, 2, 3, 2, 2]], [[7, 7, 10, 8, 2, 2]], [[1, 1, 1, 2, 2, 2, 3, 3, 2]], [[2, 3, 4, 4, 4, 4, 4, 5, 5, 6]], [[7, 7, 10, 8, 2, 2, 11, 7]], [[1, 1, 2, 1, 8, 1, 1, 0, 9, 1, 2, 2, 2, 2, 2, 2]], [[1, 2, 2, 2, 3, 3, 3, 3, 3, 1]], [[1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2]], [[1, 2, 8, 3, 5, 4, 5, 6, 7, 8, 9, 10, 10]], [[1, 2, 3, 5, 4, 5, 10, 6, 10, 7, 8, 9, 10, 10]], [[1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]], [[1, 2, 8, 3, 5, 4, 5, 6, 7, 8, 9, 10, 10, 7]], [[1, 2, 2, 2, 2, 2, 1, 2, 3, 2]], [[2, 3, 4, 4, 4, 4, 4, 4, 8, 4, 5, 4]], [[7, 3, 8, 2]], [[1, 1, 1, 2, 2, 2, 3, 3, 1]], [[1, 2, 2, 2, 2, 11, 2, 2, 1, 2]], [[1, 2, 3, 5, 4, 5, 6, 7, 8, 9, 10, 10, 4]], [[1, 2, 2, 2, 2, 11, 10, 2, 1, 2, 2]], [[7, 3, 10, 0, 2]], [[1, 1, 4, 1, 1, 1, 1, 1]], [[1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 6, 2]], [[1, 12, 2, 3, 3, 3, 3, 3]], [[1, 1, 4, 1, 1, 1, 0]], [[1, 1, 2, 1, 2, 2, 2, 3, 3, 1]], [[2, 3, 8, 2]], [[7, 7, 10, 8, 2, 3, 11, 7]], [[1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]], [[2, 3, 7, 4, 4, 4, 4, 4, 4, 8, 4, 5, 4]], [[1, 2, 2, 3, 3, 3, 3, 3, 1]], [[1, 2, 2, 2, 11, 10, 2, 1, 2, 2, 2, 2]], [[12, 1, 3, 5, 4, 6, 7, 8, 9, 10, 11]], [[1, 2, 8, 4, 5, 4, 5, 6, 7, 8, 9, 10, 10]], [[1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 0, 2, 2, 2, 2, 0]], [[1, 2, 2, 2, 6, 2, 1, 3, 2, 2]], [[1, 1, 4, 1, 1, 1, 1, 5, 1]], [[0, 0, 2, 4, 4]], [[1, 2, 8, 4, 5, 4, 5, 6, 7, 8, 3, 10, 10, 5]], [[1, 1, 1, 2, 2, 3, 3, 1]], [[1, 2, 3, 5, 4, 6, 7, 8, 9, 11, 1]], [[1, 2, 3, 5, 4, 6, 7, 2, 8, 9, 10, 11]], [[2, 3, 4, 4, 4, 4, 4, 4, 1, 8, 4, 5, 4]], [[1, 2, 3, 5, 4, 6, 7, 2, 8, 9, 10, 10, 11]], [[1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1]], [[1, 1, 4, 1, 2, 1, 1]], [[1, 1, 4, 1, 1, 1]], [[1, 4, 1, 1, 1, 1, 1]], [[1, 1, 3, 5, 4, 6, 7, 2, 8, 9, 10, 11]], [[1, 1, 4, 2, 1, 1, 1]], [[0, 2, 4, 4]], [[2, 3, 4, 4, 4, 4, 4, 1, 8, 4, 5, 4, 4]], [[1, 2, 3, 5, 4, 6, 7, 8, 9, 7, 11, 1]], [[9, 1, 2, 2, 2, 3, 3, 3, 3, 12]], [[1, 1, 2, 1, 1, 1, 1, 1, 2, 0, 2, 2, 2, 2, 0]], [[1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 0, 2, 2, 2, 2, 0, 2]], [[1, 2, 3, 5, 4, 6, 7, 1, 8, 9, 10, 11, 8, 7]], [[1, 1, 1, 1, 1, 2, 2, 2, 11, 2, 2]], [[1, 1, 1, 1, 2, 2, 2, 3, 1]], [[1, 1, 2, 1, 2, 2, 2, 3, 3, 2]], [[1, 2, 12, 3, 5, 4, 5, 6, 7, 8, 9, 10, 10]], [[1, 6, 4, 4]], [[1, 2, 10, 5, 4, 6, 7, 3, 9, 11, 1]], [[9, 1, 2, 2, 2, 3, 3, 3, 3, 12, 12, 12]], [[2, 4, 4, 4, 4, 4, 4, 4, 5]], [[1, 1, 4, 1, 2, 2, 1, 1]], [[1, 2, 3, 5, 4, 6, 3, 7, 8, 9, 11, 2, 2]], [[1, 1, 1, 1, 2, 2, 2, 3, 3, 2]], [[1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 0, 2, 2, 2, 2, 0, 2, 1, 1]], [[5, 12, 2, 3, 4, 4, 4, 4, 4, 1, 8, 4, 5, 4, 4]], [[2, 3, 4, 3, 4, 4, 4, 4, 4, 5]], [[1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 0, 2, 2, 2, 2, 0, 2, 1, 1]], [[2, 7, 4, 4, 4, 4, 4, 4, 1, 8, 4, 5, 4, 1]], [[2, 3, 7, 4, 4, 4, 4, 4, 4, 8, 4, 5, 4, 4, 7]], [[1, 2, 5, 4, 6, 7, 1, 9, 3, 11, 8, 7]], [[1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 2, 0, 2, 2, 2, 2, 0, 2, 1, 1]], [[1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 2, 2, 2, 2]], [[1, 2, 4, 6, 7, 1, 7, 11, 8, 7]], [[3, 4, 4, 4, 4, 4, 8, 4, 5, 4]], [[1, 1, 1, 2, 2, 1, 3, 3, 3]], [[1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 0, 2, 2, 2, 2, 0, 2]], [[2, 3, 4, 4, 4, 4, 4, 1, 8, 4, 5, 4]], [[1, 1, 1, 1, 2, 2, 3, 3, 2]], [[1, 1, 1, 1, 9]], [[2, 2, 2, 2, 2, 2, 1, 2, 3, 2]], [[3, 4, 4, 4, 4, 8, 4, 5, 4]], [[1, 1, 2, 1, 2, 2, 2, 3, 1, 3, 1]], [[8, 1, 2, 10, 5, 4, 6, 7, 3, 9, 11, 1, 7]], [[2, 3, 7, 4, 4, 4, 4, 4, 4, 8, 4, 5, 4, 4, 7, 5]], [[2, 2, 2, 2, 2, 2, 1, 2, 4, 2]], [[1, 1, 2, 1, 2, 2, 2, 3, 1, 3, 1, 2]], [[1, 0, 1, 1, 2, 2, 2, 3, 3, 3]], [[1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 0, 2, 2, 2, 2, 2]], [[3, 2, 2, 2, 2, 2, 1, 2, 3, 2]], [[1, 1, 1, 2, 2, 2, 3, 1]], [[2, 2, 2, 11, 10, 2, 1, 2, 2, 2, 2]], [[1, 1, 1, 1, 1, 2, 2, 2, 11, 2, 2, 1]], [[1, 2, 4, 4, 5, 6, 7, 8, 3, 10, 10, 5]], [[2, 3, 2, 4, 4, 4, 4, 4, 4, 0, 5, 6]], [[2, 3, 4, 4, 4, 4, 4, 1, 8, 4, 5, 4, 3]], [[1, 1, 1, 1, 4]], [[7, 7, 10, 8, 10, 2, 11, 7, 7]], [[1, 1, 0, 4, 1, 1, 1]], [[1, 2, 4, 4, 5, 6, 7, 8, 3, 10, 10, 5, 4]], [[9, 2, 2, 2, 2, 3, 3, 3, 3, 12]], [[3, 1, 3, 4, 4]], [[1, 2, 3, 5, 4, 5, 6, 7, 8, 10, 10, 4]], [[1, 1, 1, 1, 1, 10, 1, 2, 2, 2, 2, 2, 2]], [[12, 1, 3, 5, 0, 6, 7, 8, 9, 10, 11]], [[4, 0, 0, 2, 4, 4, 4]], [[1, 1, 1, 1, 1, 10, 1, 2, 2, 2, 2, 2, 2, 1]], [[1, 2, 5, 6, 7, 1, 9, 3, 11, 8, 7]], [[1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 11, 2, 2, 6, 2]], [[1, 1, 0, 4, 1, 1, 0, 1]], [[2, 2, 2, 2, 2, 2, 1, 2]], [[1, 1, 4, 1, 2, 1, 1, 1]], [[1, 1, 11, 2, 1, 2, 2, 2, 3, 1, 3, 1]], [[1, 2, 2, 2, 2, 1, 1, 3]], [[1, 1, 1, 1, 8, 2, 2, 3, 3, 2]], [[1, 1, 8, 1, 1, 1, 1, 1]], [[1, 1, 2, 1, 1, 1, 1, 1, 3, 2, 0, 2, 2, 1, 2, 0, 2]], [[1, 1, 2, 1, 1, 1, 1, 1, 3, 2, 0, 2, 2, 1, 2, 0, 2, 2]], [[0, 0, 2, 4, 4, 2]], [[7, 7, 10, 8, 2, 2, 11, 7, 2]], [[1, 8, 4, 1, 1, 7, 1, 1, 1]], [[1, 1, 4, 1, 1, 2, 1, 1]], [[1, 1, 1, 2, 1, 7, 1, 1, 2, 2, 2, 11, 2, 2, 6, 2]], [[1, 2, 2, 2, 3, 3, 3, 9, 1]], [[2, 3, 7, 4, 4, 4, 4, 4, 4, 8, 2, 5, 4, 7]], [[1, 1, 1, 2, 2, 2, 3, 3, 2, 2]], [[2, 3, 4, 4, 4, 4, 4, 4, 1, 8, 4, 5, 4, 4]], [[1, 1, 1, 2, 2, 2, 3, 3, 3, 2, 2]], [[2, 2, 2, 1, 2, 2, 1, 2, 3, 2, 2]], [[11, 1, 1, 4, 1, 1, 0, 1, 0]], [[7, 7, 8, 2, 2, 11, 7]], [[1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 0, 2, 2, 2, 2, 0, 2, 1, 1]], [[1, 2, 2, 3, 2, 6, 2, 1, 3, 2, 2]], [[3, 4, 4, 4, 4, 4, 8, 5, 10]], [[1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 5]], [[9, 1, 2, 3, 4, 6, 7, 8, 9, 11]], [[1, 1, 2, 1, 1, 1, 1, 1, 2, 0, 2, 2, 2, 2, 0, 1]], [[7, 7, 10, 8, 2, 1]], [[6, 1, 2, 3, 5, 4, 6, 7, 1, 8, 9, 2, 10, 10, 11, 5]], [[1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2]], [[2, 3, 4, 4, 4, 4, 4, 4, 8, 4, 6, 4]], [[1, 2, 2, 3, 3, 3, 3, 3]], [[2, 2, 3, 2, 2, 1, 2]], [[1, 6, 4, 4, 1]], [[2, 3, 2, 4, 4, 4, 4, 4, 0, 5, 6]], [[1, 2, 2, 3, 3, 3, 3, 1]], [[3, 1, 3, 4, 4, 3]], [[1, 2, 2, 2, 11, 10, 2, 1, 2, 2, 2, 2, 2]], [[7, 7, 10, 8, 2, 3, 9, 7]], [[1, 2, 3, 5, 4, 6, 9, 7, 8, 9, 11, 1]], [[1, 1, 2, 2, 2, 3, 3, 2, 2, 2]], [[3, 1, 3, 7, 5]], [[1, 8, 4, 1, 1, 6, 1, 1, 1]], [[1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 0, 2, 2, 2, 2, 8, 2]], [[1, 2, 8, 4, 5, 4, 5, 8, 9, 10, 10]], [[7, 7, 10, 8, 2, 2, 11, 4, 7, 7]], [[1, 1, 2, 6, 1, 3, 1, 1, 1, 1, 1, 2, 0, 2, 2, 2, 2, 0, 2, 1, 1]], [[2, 2, 2, 1, 2, 1, 2, 3, 2, 2]], [[5, 6, 4, 4, 1]], [[1, 2, 2, 3, 3, 3, 5, 3, 1]], [[1, 2, 5, 4, 6, 7, 1, 8, 9, 10, 11, 8, 7]], [[5, 6, 5, 0, 4, 4, 1]], [[1, 1, 1, 9]], [[1, 2, 3, 5, 6, 7, 8, 9, 7, 7, 11, 1]], [[1, 8, 4, 1, 0, 7, 1, 1]], [[1, 2, 1, 2, 2, 2, 3, 3, 1]], [[5, 6, 4, 4, 1, 1, 1]], [[0, 0, 3, 2, 4, 4, 2]], [[1, 1, 11, 4, 1, 1, 1, 1]], [[1, 2, 13, 3, 5, 4, 5, 6, 7, 8, 9, 10, 10, 9]], [[1, 12, 2, 3, 3, 2, 3, 3]], [[1, 1, 4, 1, 1, 1, 1, 1, 1]], [[1, 9]], [[1, 2, 8, 5, 5, 4, 5, 6, 7, 8, 3, 10, 10, 5]], [[2, 3, 4, 4, 4, 4, 4, 2, 1, 8, 0, 4, 5, 4, 4]], [[1, 1, 4, 1, 13, 1, 1, 0]], [[3, 3, 4, 4, 4, 4, 8, 4, 5, 4, 4, 8]], [[1, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 0, 2, 2, 2, 2, 0, 2, 2]], [[1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 0, 2, 2, 2, 2, 1]], [[1, 1, 2, 1, 1, 2, 2, 3, 9, 8, 3, 1]], [[2, 3, 7, 4, 4, 4, 4, 4, 8, 4, 5, 4, 7, 5]], [[2, 1, 6, 1, 1, 1, 1]], [[2, 3, 4, 4, 4, 4, 4, 2, 1, 8, 0, 4, 9, 5, 4, 4]], [[1, 2, 2, 2, 2, 2, 2, 2, 3]], [[1, 13, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 2, 2, 2, 2, 2]], [[1, 2, 3, 2, 5, 6, 7, 8, 10, 4]], [[1, 7, 4, 0, 1, 1, 1, 4]], [[1, 1, 2, 2, 2, 3, 3, 2, 2, 2, 2]], [[1, 1, 0, 4, 1, 1]], [[2, 2, 2, 2, 2, 1, 2, 4, 2]], [[3, 1, 3, 11, 4, 4, 3]], [[8, 1, 2, 10, 5, 4, 6, 9, 3, 11, 1, 7]], [[1, 3, 2, 2, 2, 1, 3]], [[5, 1, 1, 1, 1, 1, 1]], [[1, 2, 2, 2, 2, 2, 2, 2, 3, 1]], [[1, 2, 2, 2, 3, 3, 3, 3, 3, 1, 3]], [[7, 7, 10, 8, 2, 2, 7]], [[2, 3, 4, 4, 4, 4, 4, 4, 4, 3, 5, 6]], [[1, 2, 3, 5, 6, 7, 4, 8, 9, 7, 7, 11, 1, 5, 7, 7]], [[5, 6, 3, 4, 1]], [[8, 1, 2, 10, 5, 4, 6, 9, 9, 3, 11, 1, 7]], [[2, 8, 7, 4, 4, 4, 4, 4, 4, 1, 8, 4, 5, 4, 1, 5, 4]], [[1, 2, 3, 2, 5, 6, 7, 8, 10, 4, 2, 3]], [[1, 2, 2, 3, 3, 3, 3, 3, 3]], [[1, 1, 1, 5, 1, 2, 2, 2, 11, 2, 2, 1]], [[1, 3, 3, 4, 5, 6, 7, 8, 10, 10]], [[1, 7, 0, 1, 1, 1, 4]], [[1, 2, 4, 7, 4, 5, 6, 7, 8, 3, 10, 10, 5]], [[5, 2, 3, 4, 4, 4, 4, 4, 4, 8, 4, 6, 4]], [[2, 3, 4, 6, 4, 4, 4, 4, 1, 8, 4, 5, 4]], [[1, 2, 11, 3, 5, 4, 6, 7, 8, 9, 2]], [[1, 2, 2, 2, 3, 3, 3, 3, 3, 1, 3, 3]], [[9, 1, 2, 2, 2, 3, 3, 3, 3, 12, 9, 12, 12, 12]], [[1, 2, 3, 5, 4, 6, 7, 8, 11, 1]], [[5, 10, 1, 1, 1, 1, 1, 1]], [[1, 1, 1, 2, 3, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]], [[1, 2, 3, 5, 4, 5, 6, 7, 8, 9, 10, 10, 4, 9]], [[1, 2, 11, 2, 2, 2, 2, 1, 2, 3]], [[1, 2, 3, 5, 4, 5, 10, 6, 10, 7, 8, 9, 2, 10, 10]], [[1, 1, 1, 10, 2, 5, 1, 3, 3, 3]], [[2, 3, 4, 4, 4, 4, 4, 2, 1, 4, 8, 0, 4, 9, 5, 4, 4]], [[7, 6, 7, 2, 10, 8, 2, 2]], [[3, 1, 7, 5]], [[1, 1, 1, 0, 2, 2, 2, 3, 3, 2]], [[1, 1, 1, 2, 2, 1, 3, 3, 3, 2]], [[1, 2, 8, 5, 5, 4, 5, 6, 7, 8, 3, 10, 5, 5]], [[1, 6, 1, 1, 1, 1]], [[3, 0, 3, 7, 5, 3, 0]], [[1, 6, 4]], [[8, 1, 2, 13, 5, 4, 6, 7, 9, 11, 7, 4]], [[2, 3, 4, 4, 4, 4, 4, 1, 8, 4, 5, 4, 4, 4]], [[9, 1, 2, 2, 2, 3, 3, 3, 3, 12, 9, 2, 12, 12, 12]], [[1, 2, 3, 5, 4, 5, 6, 8, 10, 10, 4, 8]], [[3, 3, 4, 4, 4, 4, 8, 4, 5, 4, 3, 4, 8]], [[1, 2, 3, 5, 4, 6, 7, 8, 11, 1, 3]], [[2, 3, 4, 4, 4, 4, 4, 4, 8, 4, 6, 4, 4]], [[1, 1, 4, 10, 1, 2, 1, 1]], [[1, 1, 4, 1, 1, 2, 1, 1, 2]], [[9, 1, 2, 2, 2, 3, 3, 3, 3, 12, 9, 12, 12, 1, 12]], [[1, 1, 2, 2, 3, 3, 3, 3, 3, 1, 3]], [[1, 4, 4]], [[1, 2, 4, 4, 5, 6, 8, 8, 3, 10, 10, 5]], [[9, 1, 2, 2, 2, 3, 3, 3, 3, 12, 9, 12, 12, 1, 12, 3]], [[1, 1, 2, 1, 8, 1, 1, 0, 9, 1, 2, 2, 2, 2, 2, 2, 2]], [[1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 2, 2, 2, 2, 2]], [[2, 4, 4, 4, 4, 4, 4, 1, 8, 4, 5, 4, 1, 4]], [[0, 0, 2, 4, 4, 4, 4]], [[1, 1, 1, 5, 1, 0, 2, 2, 2, 11, 2, 2, 1]], [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9]], [[1, 7, 7, 10, 8, 2, 3, 11, 7]], [[1, 2, 8, 3, 5, 4, 5, 6, 8, 9, 10, 10, 7, 9]], [[1, 2, 3, 5, 6, 7, 8, 9, 7, 7, 11, 1, 2]], [[7, 7, 2, 10, 8, 2, 2]], [[1, 2, 3, 3, 5, 6, 7, 8, 9, 7, 7, 11, 1, 1]], [[2, 2, 2, 2, 2, 11, 2, 2, 1, 2]], [[1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 0, 2, 2, 2, 2, 0, 2, 1, 1]], [[1, 1, 1, 2, 2, 13, 3, 3, 1]], [[1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 11, 2, 2, 6, 2]], [[1, 2, 3, 5, 4, 4, 6, 7, 8, 11]], [[1, 8, 4, 1, 1, 7, 1, 1, 1, 1]], [[1, 1, 1, 3, 2, 2, 3, 1, 2]], [[9, 1, 2, 2, 2, 3, 3, 3, 3, 12, 9, 12, 12, 12, 12]], [[1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 6, 2, 2]], [[1, 2, 3, 5, 4, 5, 6, 7, 8, 10, 10, 10]], [[1, 3, 1, 2, 2, 2, 3, 3, 2, 2, 2, 3]], [[1, 1, 4, 1, 1, 2, 1, 1, 13, 2, 1]], [[1, 2, 3, 2, 3, 3, 3, 3, 3, 1, 3]], [[1, 1, 1, 1, 1, 10, 1, 2, 2, 2, 2, 2, 1]], [[1, 1, 2, 1, 1, 1, 1, 1, 3, 2, 0, 2, 2, 1, 0, 2, 2]], [[1, 2, 11, 3, 5, 4, 6, 7, 9, 2]], [[1, 2, 3, 5, 4, 6, 7, 11, 1]], [[1, 2, 8, 5, 5, 4, 5, 3, 7, 3, 10, 10, 5]], [[1, 2, 3, 5, 4, 6, 4, 7, 8, 8, 9, 10, 11]], [[1, 1, 8, 1, 1, 1, 1, 1, 1]], [[9, 2, 2, 2, 2, 3, 3, 3, 3]], [[1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1]], [[1, 2, 2, 1, 1, 1, 1, 2, 1, 2, 2, 0, 2, 2, 2, 2, 0, 2]], [[2, 2, 2, 2, 2, 1, 2]], [[1, 13, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 2, 2, 2, 2]], [[1, 2, 2, 2, 2, 2, 1, 2, 3, 2, 2, 2, 1, 1, 2]], [[1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 0, 2, 2, 2, 2, 0, 2, 1, 2, 1]], [[1, 1, 9]], [[2, 2, 4, 4, 4, 4, 4, 4, 4, 3, 5, 6]], [[3, 4, 4, 4, 4, 4, 1, 8, 4, 5, 4, 4, 4]], [[1, 2, 4, 4, 5, 12, 6, 7, 8, 3, 10, 10, 5, 4, 4, 8]], [[1, 2, 5, 4, 6, 7, 2, 1, 9, 3, 11, 8, 7]], [[1, 12, 2, 3, 3, 2, 3, 3, 9]], [[1, 2, 3, 5, 6, 7, 8, 9, 7, 11, 1, 2]], [[2, 2, 2, 3, 11, 10, 2, 1, 8, 7, 2, 2, 2, 2]], [[1, 1, 1, 10, 2, 5, 1, 3, 3, 3, 1]], [[1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2]], [[1, 1, 12, 4, 1, 2, 1, 1]], [[1, 2, 3, 5, 6, 7, 8, 5, 9, 7, 11, 1, 2]], [[9, 1, 2, 2, 2, 3, 3, 3, 3, 12, 2]], [[1, 2, 12, 3, 5, 4, 5, 6, 7, 8, 9, 10, 10, 10, 4]], [[1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 2, 1, 2, 3, 2]], [[1, 11, 5, 2, 2, 2, 1, 2, 3]], [[1, 4, 2, 1, 2, 2, 2, 2, 3, 1, 3, 1]], [[1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 11, 2, 2, 6, 2]], [[7, 10, 8, 2, 3, 9, 7]], [[1, 2, 8, 1, 1, 1]], [[0, 0, 2, 4, 4, 4, 0]], [[1, 1, 2, 1, 2, 2, 2, 2, 3, 3, 1]], [[1, 2, 2, 3, 3, 3, 3, 3, 3, 3]], [[1, 2, 2, 2, 6, 2, 4, 1, 3, 2, 2]], [[1, 1, 0, 13, 4, 1, 1, 1]], [[1, 1, 2, 12, 1, 1, 1, 4, 1, 1, 2, 2, 2, 1, 2, 3, 2]], [[0, 0, 0, 2, 4, 4, 4]], [[2, 4, 4, 4, 8, 4, 4, 1, 4, 5, 4, 1, 4]], [[1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 6, 2, 1]], [[7, 7, 2, 10, 8, 2, 2, 2]], [[7, 10, 9, 2, 3, 9, 7]], [[1, 1, 2, 9]], [[1, 1, 1, 9, 1]], [[1, 1, 2, 1, 1, 1, 1, 1, 3, 2, 0, 2, 2, 1, 0, 2]], [[1, 2, 5, 3, 5, 4, 5, 6, 7, 8, 9, 10, 10, 4, 9, 4]], [[12, 1, 3, 5, 0, 6, 7, 8, 9, 11]], [[1, 1, 11, 1, 9, 1]], [[1, 1, 2, 1, 3, 1, 1, 1, 1, 2, 0, 2, 2, 2, 2, 0, 2, 1, 1]], [[1, 7, 5]], [[1, 2, 4, 5, 10, 7, 1, 7, 10, 8, 7]], [[1, 1, 2, 1, 1, 1, 1, 1, 3, 0, 0, 2, 2, 1, 0, 2, 2]], [[1, 4, 1, 2, 2, 1, 1, 1]], [[1, 1, 1, 1, 1, 2, 2, 2, 3, 1]], [[0, 2, 2, 3, 11, 3, 3, 3, 1]], [[1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2]], [[1, 1, 1, 2, 3, 2, 2, 3, 1, 2, 2]], [[12, 1, 3, 5, 6, 7, 8, 9, 10, 11, 9]], [[1, 2, 13, 3, 9, 5, 4, 5, 6, 7, 8, 9, 10, 10, 9]], [[1, 1, 1, 2, 3, 2, 2, 3, 1, 5, 2]], [[1, 1, 2, 2, 3, 3, 3, 3, 1, 3]], [[11, 2, 3, 5, 4, 6, 7, 8, 9, 10, 10, 4, 9]], [[1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2]], [[2, 2, 2, 1, 2, 2, 3, 2, 2]], [[9, 1, 4, 2, 2, 2, 3, 3, 3, 3, 12, 9, 12, 12, 12, 3]], [[2, 3, 4, 8, 4, 4, 4, 4, 4, 1, 8, 4, 0, 5, 4]], [[2, 3, 4, 4, 4, 4, 2, 1, 8, 0, 4, 5, 4, 4]], [[12, 1, 7, 3, 5, 4, 0, 6, 7, 8, 9, 10, 11]], [[7, 13, 7, 10, 8, 2, 2, 11, 7]], [[8, 4, 4, 4, 4, 4, 8, 4, 5, 4]], [[2, 4, 4, 5, 4, 4, 4, 4, 4, 5]], [[1, 2, 3, 5, 4, 4, 6, 7, 1, 8, 9, 10, 11, 8, 7]], [[1, 1, 1, 2, 2, 12, 3, 1]], [[1, 1, 1, 5, 1, 1, 10, 1, 2, 2, 2, 2, 2, 1, 2]], [[1, 2, 3, 5, 4, 6, 4, 7, 8, 8, 9, 10, 11, 8]], [[1, 13, 1, 1, 2, 1, 1, 4, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2]], [[1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1]], [[1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2]], [[1, 2, 3, 5, 4, 6, 7, 2, 1, 8, 9, 10, 10, 11]], [[1, 1, 1, 1, 2, 2, 2, 3, 1, 2, 5, 1]], [[7, 7, 10, 8, 1, 2, 11, 7, 2, 7]], [[1, 2, 4, 4, 5, 5, 12, 6, 10, 6, 8, 3, 10, 10, 5, 4, 4, 8]], [[7, 3, 5, 10, 13, 2, 2]], [[1, 8]], [[0, 9, 2, 4, 4]], [[1, 2, 8, 5, 5, 4, 5, 6, 7, 8, 3, 10, 10, 5, 7]], [[5, 12, 2, 3, 4, 4, 4, 4, 4, 4, 1, 8, 4, 5, 4, 4]], [[1, 1, 1, 2, 3, 2, 0, 2, 3, 1, 2, 2]], [[2, 3, 4, 4, 4, 4, 4, 1, 8, 4, 5, 4, 4, 4, 4]], [[3, 1, 2, 9]], [[1, 1, 1, 2, 1, 12, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]], [[1, 0, 7, 1, 10, 2, 5, 1, 3, 3, 3, 1]], [[1, 2, 2, 2, 2, 2, 1, 2, 3, 2, 2, 2, 1, 1, 2, 2]], [[0, 2, 4]], [[2, 1, 0, 1, 1]], [[2, 3, 7, 4, 4, 4, 4, 4, 4, 8, 2, 5, 4, 7, 3]], [[2, 4, 4, 4, 4, 4, 4, 5]], [[3, 0, 9, 7, 5, 3, 0]], [[7, 3, 10, 0, 1, 2, 10, 10]], [[9, 1, 2, 2, 2, 3, 3, 3, 3, 3, 12, 9, 12, 12, 12]], [[2, 3, 4, 8, 4, 4, 4, 4, 4, 1, 8, 4, 0, 5, 5, 4]], [[0, 1, 4, 4]], [[3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 0, 2, 2, 2, 2, 0, 2, 1, 1]], [[3, 4, 13, 4, 4, 4, 8, 4, 5, 4, 8]], [[7, 7, 10, 2, 1]], [[2, 4, 3, 4, 4, 4, 4, 4, 4, 8, 4, 4]], [[1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 0, 2, 2, 2, 2, 8, 2, 2, 1]], [[1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 0, 2, 2, 2, 2, 0, 2, 1, 1, 2]], [[1, 2, 3, 3, 3, 5, 3, 1, 3]], [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 8, 8]], [[1, 1, 1, 1, 8, 2, 2, 3, 3]], [[1, 1, 1, 2, 3, 2, 2, 3, 2, 2]], [[1, 1, 2, 2, 6, 1, 3, 1, 1, 1, 1, 1, 2, 0, 2, 2, 2, 2, 0, 2, 1, 1]], [[2, 3, 7, 4, 4, 4, 4, 4, 8, 2, 5, 4, 7, 4]], [[1, 1, 1, 2, 2, 10, 3, 3, 3]], [[2, 3, 4, 4, 4, 4, 4, 4, 8, 4, 6]], [[13, 0, 7, 1, 10, 2, 5, 1, 3, 3, 3, 1]], [[1, 1, 12, 1, 1, 1, 4, 1, 1, 2, 2, 2, 1, 2, 3, 2]], [[1, 1, 2, 1, 3, 1, 4, 1, 1, 2, 2, 2, 1, 2, 3, 2]], [[2, 2, 2, 2, 2, 11, 2, 1, 9, 1, 2]], [[7, 7, 10, 8, 9, 2, 3, 11, 7]], [[1, 1, 2, 1, 1, 1, 1, 2, 0, 2, 2, 2, 2, 0]], [[2, 0, 0, 2, 13, 4, 4, 4]], [[1, 2, 3, 5, 4, 6, 1, 2, 8, 9, 10, 10, 11, 1]], [[1, 3, 9]], [[2, 8, 7, 4, 4, 4, 4, 4, 4, 1, 8, 0, 5, 4, 1, 5, 4]], [[1, 1, 2, 12, 1, 1, 1, 4, 1, 1, 2, 2, 2, 1, 2, 3, 2, 2]], [[2, 3, 4, 4, 4, 4, 4, 5, 5, 2, 4, 6]], [[1, 2, 4, 4, 5, 5, 12, 6, 10, 4, 6, 8, 3, 10, 10, 5, 4, 4, 8]], [[1, 1, 4, 1, 1]], [[2, 2, 0, 0, 2, 13, 4, 4, 4]], [[1, 1, 4, 5, 1, 1, 1, 1, 1, 1, 5]], [[2, 2, 2, 2, 2, 2, 1, 2, 3, 2, 3]], [[9, 1, 2, 2, 2, 3, 0, 4, 3, 3, 3, 12, 2, 3]], [[2, 3, 4, 8, 4, 4, 4, 4, 1, 8, 4, 0, 5, 5, 4, 4]], [[5, 12, 2, 3, 4, 4, 4, 4, 4, 4, 1, 5, 8, 4, 5, 4, 4]], [[1, 4, 1, 1, 1, 1, 5, 1]], [[1, 2, 1, 2, 2, 2, 3, 3, 1, 3]], [[1, 1, 2, 1, 2, 1, 4, 1, 1, 2, 2, 2, 1, 2, 10, 2]], [[2, 2, 2, 2, 2, 11, 11, 2, 1, 9, 1, 2]], [[12, 1, 3, 5, 6, 7, 8, 9, 10, 11, 9, 1]], [[1, 1, 11, 4, 1, 1, 1, 1, 1]], [[1, 2, 3, 11, 4, 6, 4, 7, 8, 8, 9, 10, 11, 11]], [[12, 1, 3, 5, 6, 7, 8, 9, 10, 11, 9, 12]], [[2, 3, 7, 4, 4, 4, 4, 4, 4, 8, 5, 4, 4, 7]], [[1, 1, 1, 1, 5, 1, 2, 2, 2, 2, 2, 2]], [[1, 1, 1, 0, 1, 1]], [[7, 4, 3, 5, 10, 8, 2, 2]], [[1, 2, 8, 3, 5, 4, 5, 6, 7, 8, 12, 9, 10, 10]], [[1, 2, 2, 6, 2, 1, 3, 2, 2]], [[1, 1, 4, 5, 1, 1, 1, 1, 1, 1, 5, 5]], [[1, 0, 2, 1, 1, 1, 1, 1, 2, 2, 0, 2, 2, 2, 2, 8, 2]], [[1, 13, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 2, 2, 0, 2, 2, 2]], [[11, 2, 3, 4, 8, 4, 4, 4, 4, 4, 1, 8, 4, 0, 5, 5, 4]], [[1, 3, 1, 2, 2, 2, 3, 3, 2, 2, 2, 3, 2]], [[1, 2, 13, 3, 5, 4, 5, 6, 6, 8, 9, 10, 3, 10, 9, 1]], [[1, 2, 2, 2, 3, 3, 3, 9, 1, 2]], [[9, 1, 11, 4, 1, 1, 1, 1]], [[1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2]], [[1, 2, 3, 5, 4, 6, 7, 1, 8, 9, 10, 11, 8, 7, 6]], [[3, 1, 1, 1, 1, 3, 1, 1, 1, 2, 0, 2, 2, 2, 9, 0, 2, 1, 1, 1]], [[2, 3, 4, 4, 4, 4, 4, 4, 4, 5, 6, 3]], [[1, 2, 11, 3, 5, 10, 4, 6, 7, 8, 9, 2]], [[1, 8, 2, 8, 3, 5, 4, 5, 6, 7, 8, 9, 10, 10]], [[1, 2, 3, 5, 6, 7, 8, 9, 2, 11, 1, 2]], [[12, 1, 3, 6, 7, 8, 11, 11, 9, 1]], [[1, 2, 8, 5, 5, 4, 9, 5, 3, 7, 10, 10, 5]], [[1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1]], [[1, 2, 3, 5, 4, 6, 7, 11, 1, 2]], [[1, 1, 10, 1, 1, 2, 1, 1]], [[1, 2, 3, 5, 4, 6, 4, 7, 8, 8, 9, 10, 11, 8, 7]], [[12, 6, 1, 3, 5, 0, 6, 7, 8, 9, 11]], [[1, 2, 3, 5, 3, 3, 4, 5, 10, 6, 10, 7, 8, 9, 2, 10, 10]], [[3, 3, 0, 3, 7, 5, 3, 0]], [[2, 2, 2, 2, 1, 2, 2]], [[4, 9, 1, 2, 2, 2, 3, 3, 3, 3, 12, 9, 2, 12, 12]], [[1, 1, 2, 1, 1, 1, 1, 1, 12, 0, 2, 2, 2, 8, 0, 1, 0]], [[3, 4, 3, 0, 0, 2, 4, 4, 4, 4]], [[1, 1, 1, 5, 2, 5, 1, 3, 3, 3, 2]], [[2, 3, 7, 4, 4, 4, 4, 8, 2, 5, 4, 7, 4, 4, 7]], [[1, 2, 3, 5, 6, 4, 6, 7, 2, 8, 9, 10, 11]], [[1, 1, 2, 2, 6, 1, 3, 1, 1, 1, 1, 1, 2, 0, 2, 2, 2, 2, 2, 1, 1]], [[1, 2, 3, 5, 4, 6, 7, 8, 9, 10, 9, 11]], [[1, 2, 3, 5, 4, 6, 7, 8, 11, 11, 1, 3]], [[1, 1, 1, 2, 2, 2, 3, 3]], [[8, 4, 4, 4, 4, 4, 8, 4, 5, 4, 4]], [[1, 1, 1, 1, 1, 2, 2, 11, 2, 2]], [[7, 10, 9, 3, 9, 7]], [[9, 1, 2, 2, 2, 2, 3, 0, 4, 3, 3, 3, 12, 2, 3]], [[1, 2, 3, 5, 4, 6, 7, 2, 9, 8, 9, 10, 10, 11]], [[1, 2, 4, 2, 2, 2, 1, 2, 3]], [[1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 0, 2, 2, 2]], [[1, 2, 4, 4, 6, 12, 6, 7, 8, 3, 10, 10, 5, 4, 4, 8]], [[1, 1, 2, 1, 1, 1, 1, 3, 2, 0, 2, 2, 1, 2, 0, 2, 2]], [[2, 2, 2, 1, 2, 2]], [[1, 2, 11, 3, 5, 1, 10, 4, 6, 7, 8, 9, 2]], [[7, 7, 2, 10, 8, 8, 2, 2, 2]], [[1, 2, 1, 2, 2, 2, 3, 3, 0, 1, 3]], [[1, 12, 2, 3, 3, 3, 11, 3, 3]], [[1, 2, 13, 3, 5, 4, 5, 6, 7, 8, 9, 10, 1, 10, 9, 8]], [[3, 7, 7, 10, 8, 9, 3, 11, 7, 7]], [[1, 13, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 2, 2, 0, 2, 2, 2, 2]], [[1, 2, 11, 3, 5, 10, 4, 6, 7, 8, 2]], [[2, 3, 4, 13, 4, 4, 4, 4, 11, 1, 8, 4, 5, 4, 8]], [[1, 2, 3, 5, 4, 6, 7, 1, 9, 10, 11, 3, 8, 7, 6, 4]], [[1, 3, 1, 2, 2, 1, 3, 3, 2, 3]], [[9, 1, 2, 4, 2, 2, 3, 3, 3, 3, 12]], [[6, 1, 2, 3, 5, 4, 6, 7, 1, 8, 9, 2, 10, 10, 11, 5, 4]], [[13, 13, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 2, 2, 0, 2, 2, 2]], [[1, 2, 2, 1, 1, 1, 1, 2, 1, 2, 2, 0, 2, 2, 2, 2, 0, 1, 2]], [[7, 7, 10, 8, 2, 2, 6, 11, 2]], [[2, 2, 2, 3, 2, 1, 2]], [[1, 1, 1, 1]], [[1, 2, 3, 4, 5, 5, 5]], [[5, 5, 5, 1, 2, 3]], [[5, 5, 1, 5, 2, 5, 3, 5, 4]], [[1, 1]], [[2, 4, 6, 8, 10, 12]], [[1, 1, 1, 1, 1]], [[1, 2, 3, 1, 2]], [[1, 2, 3, 4, 5, 6, 7, 1]], [[1, 2, 3, 4, 4, 5, 6, 6, 6]], [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 8]], [[1, 2, 3, 5, 4, 6, 7, 6, 6, 9, 10, 11, 10, 10]], [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 8, 6]], [[1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 10]], [[0, 0, 2, 2, 4, 4, 11, 4]], [[1, 2, 4, 2, 2, 3, 3, 3, 3, 3, 3]], [[7, 3, 10, 8]], [[1, 2, 3, 4, 5, 6, 7, 9, 10, 10, 10]], [[1, 2, 3, 4, 10, 6, 7, 8, 8, 10, 10, 8, 6]], [[1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10, 10, 8]], [[1, 2, 3, 5, 5, 7, 8, 9, 10, 10]], [[1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 10, 10]], [[1, 2, 3, 5, 6, 7, 8, 9, 1, 10, 3]], [[1, 11, 2, 3, 4, 10, 6, 7, 8, 8, 10, 10, 7, 6]], [[1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10, 10, 8, 8]], [[4, 0, 0, 2, 2, 4, 4, 11, 4, 4]], [[1, 2, 3, 4, 2, 9, 5, 6, 7, 9, 10, 10, 8, 6]], [[1, 2, 3, 5, 7, 8, 9, 1, 10, 3, 1]], [[0, 0, 2, 2, 4, 4, 4, 0, 4]], [[7, 1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 10]], [[1, 12, 2, 3, 4, 10, 6, 7, 8, 8, 10, 10, 7, 6, 4]], [[0, 0, 2, 2, 11, 4]], [[1, 2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 8, 6]], [[2, 3, 4, 4, 4, 4, 4, 4, 5, 6, 5, 4]], [[1, 2, 3, 4, 6, 2, 7, 8, 9, 1, 10, 10]], [[1, 2, 3, 5, 4, 6, 7, 8, 9, 10, 2, 11]], [[2, 3, 4, 4, 4, 4, 4, 4, 5, 6, 5]], [[1, 12, 2, 3, 4, 2, 10, 6, 7, 8, 8, 10, 10, 7, 6, 4]], [[1, 2, 3, 4, 5, 5, 6, 6, 8, 9, 1, 10, 10]], [[1, 2, 4, 2, 2, 3, 3, 3, 3, 3, 3, 1, 4]], [[0, 0, 2, 2, 11]], [[1, 2, 3, 6, 2, 7, 8, 9, 1, 10, 10]], [[2, 3, 4, 4, 6, 4, 4, 4, 4, 5, 6, 5]], [[1, 2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 8]], [[1, 2, 3, 6, 6, 7, 8, 9, 10, 10, 8, 6]], [[1, 2, 2, 3, 4, 5, 6, 2, 8, 9, 10, 10, 8, 6, 4]], [[1, 2, 4, 5, 6, 7, 7, 8, 9, 9, 10, 8]], [[1, 2, 3, 5, 4, 6, 7, 6, 6, 9, 10, 11, 10, 10, 5]], [[2, 3, 4, 4, 5, 4, 4, 4, 5, 6]], [[2, 3, 4, 4, 5, 4, 4, 4, 5, 6, 5]], [[0, 0, 2, 2, 4, 4, 0, 4]], [[1, 2, 3, 6, 6, 12, 8, 9, 10, 10, 8, 6]], [[2, 3, 4, 4, 5, 4, 4, 4, 4, 5, 6, 5]], [[0, 0, 2, 2, 0, 4, 5, 4, 4, 0]], [[0, 0, 2, 2, 11, 4, 4]], [[1, 2, 4, 5, 6, 7, 8, 11, 1, 10, 10]], [[7, 3, 10, 10, 8]], [[1, 5, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10, 10]], [[7, 0, 2, 3, 4, 5, 6, 7, 8, 9, 2, 10]], [[0, 0, 2, 2, 4, 4, 0, 4, 2]], [[1, 1, 1, 0, 1, 1, 2, 2, 2, 2, 2]], [[1, 2, 3, 4, 5, 6, 7, 7, 8, 4, 9, 10, 10, 8]], [[1, 2, 7, 3, 4, 5, 6, 7, 8, 9, 1, 10]], [[1, 12, 2, 3, 4, 10, 6, 7, 8, 8, 10, 10, 7, 6, 4, 7]], [[1, 2, 3, 6, 6, 12, 8, 4, 10, 10, 8, 6]], [[6, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10]], [[1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 10, 10, 1, 4]], [[1, 12, 2, 3, 4, 2, 10, 6, 7, 6, 8, 8, 10, 10, 7, 6, 4, 6]], [[1, 2, 3, 4, 6, 2, 7, 8, 9, 1, 10]], [[1, 2, 9, 3, 5, 6, 7, 7, 8, 9, 10, 10, 8]], [[1, 2, 2, 3, 4, 5, 6, 2, 8, 9, 10, 10, 8, 6, 4, 9]], [[2, 3, 4, 4, 5, 4, 4, 4, 5, 6, 9, 4]], [[1, 2, 3, 5, 10, 4, 6, 7, 8, 9, 10, 11, 9]], [[1, 2, 3, 6, 6, 7, 8, 9, 10, 9, 10, 8, 6]], [[0, 0, 2, 11]], [[0, 2, 2, 0, 4, 5, 4, 4, 0]], [[1, 3, 4, 5, 6, 7, 8, 9, 1, 10]], [[1, 2, 3, 4, 2, 9, 5, 6, 7, 9, 10, 10, 8, 6, 8]], [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 8, 6, 10]], [[1, 12, 2, 4, 2, 10, 6, 7, 8, 8, 10, 10, 7, 6, 4]], [[0, 1, 2, 0, 4, 5, 4, 4, 0, 2]], [[1, 1, 1, 0, 1, 1, 2, 2, 2, 2, 2, 2]], [[0, 0, 2, 11, 2, 11, 4, 0]], [[1, 0, 2, 3, 6, 6, 8, 4, 10, 10, 8, 6, 1]], [[7, 0, 2, 3, 4, 5, 6, 7, 8, 9, 2, 10, 3]], [[4, 7, 10, 8]], [[0, 0, 2]], [[1, 2, 6, 3, 5, 5, 7, 9, 5, 10, 10]], [[7, 10, 8, 2]], [[1, 3, 2, 6, 3, 3, 3, 3]], [[1, 12, 2, 3, 4, 6, 7, 8, 8, 10, 10, 7, 6, 4]], [[1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 10, 1, 4]], [[1, 2, 3, 5, 4, 6, 7, 2, 6, 6, 9, 10, 11, 10, 10, 5]], [[1, 2, 3, 4, 5, 6, 7, 7, 5, 8, 4, 9, 10, 10, 8]], [[1, 3, 4, 2, 9, 5, 6, 7, 9, 10, 10, 8, 6]], [[2, 3, 4, 4, 5, 4, 4, 4, 5, 6, 9, 4, 4]], [[5, 2, 2, 3, 3, 4, 3, 3]], [[10, 0, 2, 2, 4, 4, 4]], [[1, 2, 3, 7, 8, 9, 1, 10, 3, 1]], [[1, 2, 3, 4, 5, 6, 9, 7, 8, 9, 1, 10, 1, 4]], [[1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10, 10, 8, 7]], [[0, 0, 2, 11, 2]], [[2, 3, 2, 4, 5, 4, 4, 4, 5, 6]], [[1, 2, 3, 4, 2, 9, 5, 6, 7, 9, 10, 10, 8, 6, 10, 6]], [[1, 12, 2, 3, 4, 2, 10, 6, 7, 8, 10, 10, 7, 6, 4]], [[1, 2, 3, 5, 4, 6, 7, 8, 9, 10, 2, 11, 6]], [[10, 10, 8]], [[1, 2, 3, 7, 8, 9, 1, 10, 11, 1]], [[1, 10, 2, 3, 4, 5, 5, 6, 6, 8, 9, 7, 10, 10]], [[1, 0, 1, 1, 1, 1, 1]], [[1, 3, 2, 6, 3, 3, 3, 3, 6]], [[2, 3, 4, 4, 4, 4, 4, 5, 6, 5, 4]], [[1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 10, 10, 1, 4, 2]], [[0, 0, 2, 2, 11, 11, 4, 4]], [[1, 2, 2, 3, 4, 5, 6, 2, 8, 9, 10, 10, 5, 8, 6, 4, 9]], [[1, 2, 3, 5, 4, 6, 7, 2, 6, 6, 9, 10, 11, 11, 10, 10, 5]], [[1, 2, 3, 4, 5, 6, 2, 8, 9, 10, 10, 8, 6, 4]], [[1, 2, 3, 4, 5, 6, 9, 7, 8, 9, 1, 10, 5, 1, 4]], [[2, 3, 4, 4, 6, 4, 4, 4, 4, 5, 6, 5, 3]], [[2, 3, 7, 4, 4, 5, 4, 4, 4, 4, 5, 6, 5, 6]], [[1, 2, 3, 5, 4, 6, 7, 6, 6, 9, 10, 11, 10, 10, 5, 3, 6]], [[2, 3, 4, 4, 5, 4, 4, 4, 4, 5, 6, 5, 5]], [[1, 12, 2, 3, 4, 10, 6, 7, 8, 8, 10, 10, 7, 6, 4, 7, 10]], [[2, 3, 4, 4, 4, 4, 4, 4, 5, 7, 5, 4]], [[1, 3, 2, 6, 3, 4, 3, 3, 6]], [[1, 12, 2, 3, 4, 10, 6, 7, 8, 8, 10, 10, 7, 6, 4, 7, 10, 10]], [[0, 0, 2, 11, 0, 11]], [[1, 0, 2, 3, 6, 6, 8, 4, 10, 8, 6, 0]], [[1, 2, 3, 4, 5, 5, 6, 6, 8, 9, 1, 10, 10, 9, 9]], [[0, 1, 2, 0, 5, 4, 4, 0, 2]], [[1, 1, 1, 2, 2, 2, 3, 3, 3, 2]], [[0, 0, 3, 11, 0, 11]], [[1, 2, 3, 4, 5, 6, 4, 7, 9, 10, 10]], [[5, 2, 2, 3, 3, 4, 3, 3, 3]], [[1, 2, 3, 7, 9, 9, 1, 10, 3, 1]], [[1, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3]], [[1, 2, 2, 3, 4, 5, 6, 2, 8, 9, 4, 10, 5, 8, 6, 4, 9]], [[1, 2, 3, 4, 6, 2, 7, 8, 9, 1, 10, 6]], [[1, 12, 2, 3, 4, 2, 10, 6, 6, 8, 8, 10, 10, 7, 4, 2]], [[1, 2, 3, 5, 6, 7, 8, 9, 1, 10]], [[1, 2, 11, 3, 7, 9, 9, 1, 10, 3, 1]], [[1, 2, 3, 4, 5, 6, 7, 7, 5, 8, 4, 9, 10, 9, 8]], [[1, 2, 3, 7, 8, 9, 1, 10, 3, 1, 9]], [[1, 2, 4, 5, 6, 7, 8, 9, 1, 10]], [[1, 2, 3, 4, 10, 6, 7, 8, 8, 10, 6, 10, 8, 6]], [[1, 2, 4, 2, 2, 3, 3, 3, 3, 3, 3, 2]], [[1, 2, 3, 5, 4, 6, 7, 8, 9, 1, 10, 11]], [[1, 3, 8, 5, 6, 7, 7, 5, 8, 4, 5, 9, 10, 10, 8]], [[0, 0, 2, 2, 4, 4, 11, 4, 4]], [[0, 0, 2, 2]], [[1, 2, 3, 4, 6, 7, 6, 6, 9, 10, 11, 10, 6, 10, 5]], [[1, 2, 3, 8, 10, 6, 7, 8, 8, 10, 10, 8, 6]], [[1, 12, 4, 3, 4, 10, 6, 7, 8, 8, 10, 8, 10, 7, 6, 4, 8]], [[1, 2, 3, 5, 7, 8, 1, 10, 3, 9, 1]], [[1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 10, 9]], [[2, 3, 7, 4, 4, 5, 4, 4, 4, 6, 4, 5, 6, 5, 6]], [[1, 2, 3, 4, 6, 2, 6, 8, 9, 1, 10]], [[1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 10, 10, 8, 4]], [[1, 2, 2, 3, 4, 3, 5, 6, 7, 8, 8, 10, 10, 8]], [[1, 2, 3, 5, 4, 6, 7, 8, 9, 10, 8, 2, 11]], [[1, 2, 3, 4, 5, 6, 7, 7, 9, 10, 10, 8, 8]], [[0, 0, 1, 1, 0, 1, 1, 2, 2, 2, 2, 2, 2]], [[2, 0, 0, 3, 2, 2, 11, 4, 2]], [[0, 0, 2, 4, 4, 0, 4, 2]], [[1, 2, 2, 2, 2, 2, 2, 3, 2]], [[1, 2, 3, 4, 5, 5, 6, 6, 4, 8, 9, 1, 10, 10, 9, 9]], [[1, 2, 3, 4, 5, 6, 6, 8, 9, 1, 10, 10]], [[1, 12, 2, 3, 4, 6, 7, 8, 8, 3, 10, 10, 7, 6, 4]], [[7, 3, 10, 8, 0, 10]], [[1, 12, 2, 3, 4, 10, 6, 7, 8, 8, 10, 10, 7, 6, 4, 6, 10]], [[1, 2, 6, 2, 5, 5, 7, 9, 5, 10, 10]], [[2, 3, 4, 4, 5, 4, 4, 4, 4, 5, 6, 3, 5]], [[1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10, 10, 8, 7, 7]], [[1, 2, 4, 2, 2, 3, 3, 3, 3, 3, 3, 2, 3]], [[1, 2, 5, 4, 6, 7, 8, 9, 1, 10, 11, 1]], [[2, 3, 4, 4, 6, 4, 4, 4, 4, 5, 6, 5, 4]], [[1, 2, 3, 5, 4, 6, 7, 8, 9, 10, 8, 2, 11, 9]], [[0, 3, 11, 0, 11]], [[1, 2, 3, 5, 4, 6, 7, 2, 6, 6, 9, 10, 11, 10, 10, 5, 10]], [[0, 11, 2, 11, 2, 11, 4, 0]], [[11, 1, 2, 3, 5, 4, 6, 7, 8, 9, 10, 2, 11, 6]], [[1, 2, 3, 8, 5, 4, 6, 7, 6, 6, 9, 10, 11, 10, 10]], [[1, 2, 9, 3, 5, 2, 7, 7, 8, 9, 10, 10, 8]], [[0, 0, 2, 11, 2, 11]], [[2, 3, 4, 4, 5, 4, 4, 4, 5, 6, 9, 3, 4, 4]], [[1, 2, 3, 4, 5, 5, 6, 6, 8, 9, 7, 10, 10]], [[1, 2, 3, 4, 5, 6, 7, 9, 10, 10, 8, 8, 8]], [[2, 3, 4, 4, 5, 4, 10, 4, 4, 4, 5, 6, 5]], [[1, 12, 2, 10, 4, 2, 10, 6, 6, 8, 8, 10, 10, 7, 4, 2]], [[1, 2, 3, 5, 10, 4, 6, 7, 8, 9, 1, 7, 11, 9, 4, 5]], [[1, 1, 1, 0, 1, 1, 2, 2, 2, 2]], [[2, 0, 0, 3, 2, 2, 11, 2, 3]], [[0, 0, 2, 2, 4, 4, 11, 3, 0]], [[2, 3, 4, 4, 5, 4, 4, 4, 6, 9, 4]], [[1, 12, 2, 3, 4, 6, 7, 8, 8, 10, 10, 4, 6, 4, 7, 7]], [[10, 0, 11, 2, 11, 2, 11, 4, 0]], [[5, 0, 0, 2, 11, 2]], [[2, 4, 4, 5, 4, 4, 4, 5, 6, 9, 4, 4]], [[7, 0, 0, 2, 4, 4, 0, 4, 2]], [[1, 2, 3, 5, 6, 7, 9, 1, 10, 1, 4, 1]], [[1, 2, 3, 5, 4, 6, 7, 6, 6, 9, 10, 11, 10, 10, 5, 3, 6, 6]], [[0, 0, 2, 11, 2, 4, 0, 2]], [[1, 2, 4, 2, 2, 3, 3, 3, 3, 3, 3, 1, 4, 4]], [[2, 3, 4, 4, 6, 4, 4, 7, 4, 4, 5, 6, 5, 4]], [[0, 0, 2, 11, 4, 4, 4, 0]], [[1, 12, 2, 3, 4, 6, 7, 8, 8, 10, 10, 4, 6, 4, 7, 7, 6]], [[1, 12, 2, 3, 4, 10, 6, 6, 8, 8, 10, 10, 7, 4, 2]], [[1, 1, 2, 2, 2, 2, 3, 3, 3, 2, 2]], [[2, 3, 4, 4, 6, 4, 4, 4, 6, 9, 4]], [[7, 0, 2, 4, 4, 0, 4, 2]], [[5, 0, 2, 11, 2]], [[7, 0, 0, 2, 3, 4, 0, 4, 2]], [[12, 2, 3, 4, 6, 7, 8, 8, 10, 10, 7, 6, 4]], [[1, 12, 2, 3, 4, 8, 7, 8, 8, 10, 10, 4, 6, 4, 7, 7, 7]], [[1, 2, 3, 4, 5, 5, 6, 6, 8, 9, 1, 10, 10, 9, 9, 2]], [[7, 10, 8, 9]], [[1, 2, 6, 2, 5, 7, 9, 5, 10, 10]], [[1, 2, 4, 4, 2, 2, 3, 3, 3, 3, 3, 3, 2, 3]], [[1, 12, 2, 3, 4, 6, 7, 8, 8, 10, 10, 4, 6, 4, 7]], [[1, 2, 5, 6, 7, 9, 1, 10, 1, 4, 1]], [[1, 12, 2, 3, 4, 12, 6, 7, 8, 8, 10, 10, 7, 9, 6, 4]], [[1, 2, 4, 2, 2, 3, 3, 3, 3, 3, 11, 3, 1, 4]], [[1, 12, 2, 3, 4, 2, 10, 6, 7, 8, 10, 10, 7, 6, 8, 4]], [[2, 8, 3, 4, 4, 5, 4, 4, 4, 4, 5, 6]], [[1, 2, 4, 2, 2, 3, 0, 3, 3, 3, 3, 1, 4]], [[1, 2, 3, 4, 2, 9, 5, 6, 7, 9, 10, 10, 8, 6, 9]], [[1, 2, 2, 3, 9, 4, 3, 4, 6, 7, 8, 8, 10, 10, 8]], [[9, 0, 2, 4, 4, 0, 4, 2]], [[1, 2, 3, 7, 11, 8, 9, 1, 10, 3, 1, 3]], [[0, 0, 2, 2, 5, 4, 4, 11, 3, 0]], [[1, 2, 3, 10, 4, 5, 6, 7, 9, 10, 10, 10, 9]], [[0, 0, 2, 11, 2, 11, 4, 0, 4]], [[1, 3, 5, 6, 7, 1, 4, 5, 9, 10, 10, 8]], [[5, 0, 2, 2]], [[10, 8, 9]], [[2, 4, 4, 5, 4, 4, 4, 5, 6, 9, 4, 6, 4, 6]], [[1, 2, 2, 3, 4, 1, 6, 7, 8, 9, 10, 10, 8]], [[0, 2, 2, 2, 2, 2, 3]], [[1, 2, 4, 5, 6, 7, 8, 9, 10, 10, 8, 6, 10]], [[1, 12, 2, 3, 4, 2, 10, 6, 7, 10, 10, 7, 6, 8, 4]], [[1, 2, 3, 4, 5, 6, 6, 8, 9, 2, 10, 10]], [[1, 2, 4, 5, 6, 9, 7, 8, 9, 1, 10, 5, 1, 4]], [[1, 1, 1, 1, 1, 1, 1]], [[0, 1, 1, 2, 0, 5, 4, 4, 0, 2]], [[2, 7, 3, 7, 10, 10, 8]], [[12, 2, 3, 4, 6, 7, 8, 8, 9, 10, 7, 6, 4, 8]], [[1, 2, 3, 4, 6, 7, 8, 8, 10, 10, 7, 6, 4]], [[1, 2, 2, 3, 9, 8, 4, 3, 4, 6, 7, 8, 8, 10, 10, 8]], [[1, 3, 2, 6, 3, 3, 3, 3, 3]], [[1, 3, 5, 6, 7, 9, 1, 10, 1, 4, 1]], [[1, 1, 3, 1, 2, 2, 1, 2, 3, 3, 3, 2, 1]], [[0, 2, 2, 2, 2, 2, 3, 2]], [[2, 4, 4, 5, 4, 4, 12, 4, 5, 6, 5, 9, 4, 6, 4, 6]], [[1, 2, 2, 3, 4, 3, 5, 6, 7, 11, 8, 8, 10, 10, 8]], [[0, 0, 2, 2, 2, 11]], [[1, 2, 3, 6, 2, 6, 8, 9, 1, 10]], [[2, 3, 4, 6, 4, 4, 4, 4, 5, 6, 5, 3]], [[1, 2, 5, 4, 6, 7, 8, 10, 9, 1, 10, 3, 1, 6]], [[12, 2, 3, 4, 6, 6, 7, 8, 8, 10, 10, 7, 6, 4]], [[1, 2, 4, 5, 6, 7, 8, 9, 10, 8]], [[1, 2, 2, 4, 5, 6, 2, 8, 9, 10, 10, 8, 6, 4]], [[1, 2, 3, 5, 4, 6, 7, 8, 9, 10, 11, 1]], [[1, 2, 3, 5, 5, 7, 8, 9, 9, 10, 3]], [[1, 2, 3, 4, 5, 6, 6, 8, 9, 2, 10, 7, 10]], [[1, 2, 3, 5, 4, 6, 7, 8, 9, 2, 11]], [[1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 8, 2]], [[1, 2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 8, 9]], [[1, 2, 3, 3, 5, 6, 7, 8, 8, 10, 10, 8]], [[1, 3, 2, 3, 3, 3, 3, 3]], [[1, 2, 2, 2, 2, 2, 5, 3, 2]], [[2, 3, 2, 4, 5, 4, 4, 4, 5, 6, 4]], [[1, 2, 3, 8, 10, 6, 7, 8, 2, 8, 10, 10, 8]], [[1, 2, 3, 7, 8, 10, 9, 1, 10, 11, 1]], [[1, 2, 3, 5, 4, 6, 7, 11, 8, 9, 10, 11, 1]], [[1, 2, 3, 5, 4, 6, 7, 2, 6, 6, 9, 10, 11, 10, 9, 5]], [[2, 3, 4, 4, 4, 4, 4, 4, 5, 6, 5, 4, 4]], [[2, 4, 4, 5, 4, 4, 4, 5, 6, 5]], [[2, 3, 4, 5, 6, 7, 8, 9, 1, 10, 10, 1, 4, 9]], [[1, 12, 2, 3, 4, 2, 10, 6, 7, 8, 8, 10, 10, 7, 6, 4, 2]], [[9, 0, 2, 4, 0, 4, 2]], [[1, 2, 3, 4, 2, 9, 5, 6, 7, 9, 10, 10, 8, 6, 8, 6]], [[1, 2, 3, 5, 4, 6, 7, 6, 6, 9, 10, 11, 5, 10, 10, 5, 3, 6]], [[1, 2, 3, 5, 4, 6, 7, 6, 6, 9, 9, 10, 11, 10, 10, 5, 6, 1, 6]], [[1, 1, 3, 4, 5, 6, 7, 8, 9, 10, 10, 8, 6]], [[1, 1, 2, 3, 2, 2, 3, 3, 3, 2, 3]], [[1, 0, 2, 3, 4, 5, 6, 7, 7, 5, 8, 4, 9, 10, 10, 8]], [[1, 2, 2, 3, 4, 5, 6, 2, 8, 9, 4, 10, 5, 8, 6, 4, 9, 6]], [[1, 2, 3, 8, 5, 4, 6, 7, 6, 6, 9, 10, 11, 10, 10, 2]], [[5, 2, 2, 3, 3, 4, 3, 1, 3]], [[1, 2, 2, 4, 5, 6, 2, 8, 10, 10, 8, 6, 4]], [[1, 2, 3, 4, 5, 5, 6, 6, 8, 9, 1, 10, 10, 10, 9, 9, 2, 9]], [[12, 2, 2, 3, 4, 1, 6, 6, 8, 9, 10, 10, 8, 9]], [[1, 2, 5, 6, 7, 9, 1, 10, 3, 1]], [[0, 0, 2, 12]], [[1, 2, 4, 5, 6, 7, 8, 9, 1, 10, 7]], [[2, 3, 4, 4, 3, 6, 4, 4, 4, 4, 5, 6, 5]], [[0, 2, 2, 2, 2, 3]], [[1, 1, 2, 3, 5, 4, 6, 7, 2, 6, 6, 9, 10, 11, 10, 9, 5]], [[1, 2, 2, 8, 2, 2, 2, 2, 3, 2]], [[1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 10, 9, 3]], [[0, 0, 2, 2, 4, 4, 11, 4, 0]], [[1, 2, 3, 4, 6, 7, 6, 6, 9, 10, 2, 11, 10, 6, 9, 10, 5]], [[1, 0, 2, 11, 2, 11, 0]], [[1, 2, 2, 4, 5, 6, 2, 8, 9, 10, 10, 8, 6]], [[1, 3, 4, 2, 9, 5, 6, 7, 9, 9, 10, 8, 6, 3, 4]], [[1, 2, 3, 4, 5, 6, 6, 8, 9, 1, 10, 10, 1]], [[1, 3, 5, 6, 3, 4, 3, 3, 6]], [[1, 12, 2, 3, 4, 6, 7, 8, 7, 10, 10, 4, 6, 4, 7]], [[1, 2, 4, 5, 6, 7, 9, 1, 10, 2, 1]], [[1, 2, 6, 3, 5, 5, 9, 5, 10, 10]], [[10, 0, 1, 1, 2, 0, 5, 4, 4, 0, 2]], [[1, 12, 2, 3, 4, 10, 6, 7, 11, 8, 8, 10, 10, 7, 6, 4, 7, 10, 10]], [[2, 7, 4, 4, 5, 4, 3, 4, 4, 4, 5, 6, 12, 5, 6]], [[1, 0, 2, 1, 2, 3, 4, 12, 5, 6, 7, 7, 5, 8, 4, 9, 2, 10, 10, 8]], [[0, 0, 1, 1, 0, 1, 1, 2, 2, 9, 1, 2, 2]], [[1, 12, 2, 3, 4, 2, 6, 6, 8, 8, 10, 10, 7, 4, 2]], [[1, 2, 4, 5, 6, 7, 8, 9, 10, 1, 10, 10]], [[0, 6, 2, 2, 4, 4, 11, 4, 4, 4]], [[9, 0, 2, 4, 4, 0, 2, 4, 2]], [[1, 2, 5, 3, 4, 5, 6, 6, 8, 9, 1, 10, 10]], [[2, 7, 3, 4, 5, 6, 7, 8, 9, 1, 10]], [[7, 0, 2, 3, 4, 5, 6, 7, 8, 8, 9, 2, 10]], [[1, 9, 4, 9, 6, 7, 7, 8, 9, 9, 10, 8]], [[0, 3, 11, 11]], [[2, 1, 3, 5, 6, 3, 4, 3, 3, 6]], [[2, 3, 4, 4, 5, 4, 6, 9, 4]], [[1, 2, 4, 5, 6, 7, 8, 9, 10, 1, 10, 3, 10]], [[1, 2, 4, 5, 6, 7, 8, 9, 1, 10, 10]], [[0, 3, 11, 11, 11]], [[1, 2, 3, 4, 6, 7, 8, 8, 10, 10, 7, 6, 4, 10, 8]], [[1, 2, 3, 5, 4, 6, 7, 8, 9, 2, 11, 5]], [[1, 3, 2, 3, 3, 3, 3, 0]], [[1, 8, 2, 3, 6, 6, 8, 4, 10, 10, 8, 6, 1]], [[1, 2, 3, 4, 2, 9, 5, 6, 7, 9, 10, 2, 10, 8, 6, 8, 5]], [[1, 2, 2, 3, 4, 5, 6, 2, 8, 10, 10, 8, 6, 4, 2]], [[1, 2, 3, 4, 5, 6, 7, 9, 10, 10, 8, 8]], [[3, 2, 1, 3, 6, 6, 3, 4, 3, 3, 6, 5]], [[11, 1, 2, 3, 5, 4, 6, 7, 8, 9, 2, 11]], [[5, 5, 2, 3, 4, 5, 4, 4, 6, 4, 5, 6, 5]], [[1, 2, 2, 3, 4, 6, 6, 2, 8, 9, 4, 10, 5, 8, 6, 4, 9, 6, 6]], [[1, 2, 4, 5, 6, 9, 7, 8, 9, 1, 5, 10, 5, 1, 4]], [[1, 12, 2, 3, 4, 2, 10, 6, 7, 10, 7, 6, 8, 4]], [[0, 0, 1, 2, 11, 2]], [[5, 6, 0, 2, 11, 10]], [[0, 2, 2, 2, 2, 2, 11, 2]], [[1, 13, 2, 3, 4, 2, 10, 6, 7, 6, 8, 8, 10, 10, 7, 6, 4, 6]], [[1, 9, 4, 5, 6, 7, 8, 9, 1, 10, 10]], [[1, 3, 5, 6, 3, 4, 3, 3, 6, 5, 5]], [[5, 2, 6, 0, 2, 11, 10]], [[8, 2, 3, 7, 8, 9, 1, 10, 3, 1, 3]], [[1, 2, 4, 5, 6, 7, 7, 8, 9, 9, 10, 7]], [[2, 1, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3]], [[2, 3, 4, 4, 3, 6, 4, 4, 4, 4, 5, 5]], [[5, 5, 2, 3, 4, 5, 4, 7, 4, 6, 4, 5, 6, 5]], [[1, 2, 2, 3, 9, 4, 3, 4, 6, 7, 8, 13, 8, 10, 10, 8]], [[1, 2, 3, 5, 4, 6, 7, 6, 6, 9, 10, 6, 11, 11, 10, 10]], [[1, 2, 2, 2, 2, 9, 2, 3]], [[1, 2, 3, 4, 2, 9, 5, 6, 7, 9, 10, 2, 10, 8, 6, 8, 10]], [[1, 12, 2, 3, 4, 6, 7, 8, 7, 10, 10, 5, 6, 4, 7]], [[1, 3, 2, 6, 3, 3, 3, 6, 3]], [[1, 2, 3, 6, 2, 6, 9, 1, 10]], [[1, 2, 3, 6, 2, 6, 8, 9, 12, 10]], [[2, 4, 4, 5, 6, 7, 8, 9, 10, 10, 1, 4, 9]], [[1, 2, 3, 4, 2, 9, 5, 6, 7, 9, 10, 10, 6, 11, 6]], [[1, 1, 4, 4, 2, 3, 3, 3, 3, 3, 3, 3, 2, 3]], [[1, 6, 9, 4, 6, 7, 8, 9, 1, 10, 10, 6]], [[2, 4, 3, 4, 4, 4, 4, 4, 4, 5, 6, 5]], [[2, 2, 2, 2, 2, 11, 2, 2]], [[10, 1, 3, 4, 1, 2, 9, 5, 6, 7, 9, 10, 10, 8, 6]], [[9, 0, 2, 4, 4, 0, 2, 4, 2, 4]], [[2, 7, 4, 4, 4, 4, 3, 4, 4, 4, 6, 12, 5, 6]], [[5, 2, 2, 3, 5, 3, 4, 3, 3, 3]], [[4, 5, 2, 3, 4, 5, 4, 4, 6, 4, 5, 6, 5]], [[1, 2, 3, 4, 10, 6, 6, 8, 8, 10, 10, 7, 4, 2]], [[6, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]], [[1, 2, 4, 2, 2, 3, 0, 8, 3, 3, 3, 3, 1, 4]], [[1, 2, 3, 4, 5, 6, 6, 8, 9, 1, 10, 10, 10]], [[1, 2, 3, 4, 10, 6, 6, 6, 8, 8, 10, 10, 7, 4, 2]], [[1, 2, 3, 7, 9, 9, 1, 10, 3, 1, 1]], [[7, 0, 0, 2, 4, 4, 0, 4, 0]], [[2, 3, 4, 4, 4, 4, 8, 4, 4, 12, 6]], [[5, 0, 2, 2, 3]], [[2, 3, 4, 4, 5, 4, 4, 4, 4, 5, 6, 5, 5, 4, 5]], [[1, 2, 3, 4, 5, 6, 7, 7, 9, 1, 10, 10]], [[1, 12, 2, 3, 4, 2, 11, 6, 7, 10, 7, 6, 8, 4]], [[1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1]], [[1, 2, 3, 4, 10, 6, 6, 8, 8, 10, 10, 4, 2]], [[1, 12, 2, 4, 2, 10, 6, 7, 8, 8, 10, 7, 6, 4]], [[1, 2, 2, 3, 5, 6, 2, 8, 9, 10, 10, 8, 6, 4, 9, 10]], [[7, 0, 2, 3, 4, 5, 2, 6, 7, 8, 9, 2, 10, 3]]] 

Generations

claude-3-haiku-20240307. fail_base: True, fail_plus: True

  Here's the completed code for the problem:

```python
def is_sorted(lst):
    '''
    Given a list of numbers, return whether or not they are sorted
    in ascending order. If list has more than 1 duplicate of the same
    number, return False. Assume no negative numbers and only integers.

    Examples
    is_sorted([5]) ➞ True
    is_sorted([1, 2, 3, 4, 5]) ➞ True
    is_sorted([1, 3, 2, 4, 5]) ➞ False
    is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
    is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
    is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
    is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
    is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
    '''
    if len(lst) <= 1:
        return True
    
    for i in range(1, len(lst)):
        if lst[i] <= lst[i-1]:
            if lst[i] == lst[i-1] and lst.count(lst[i]) > 1:
                return False
            else:
                return False
    
    return True

code-millenials-34b. fail_base: True, fail_plus: True

  def is_sorted(lst):
    if len(lst) == 1:
        return True
    elif len(lst) == 2:
        return lst[0] < lst[1]
    else:
        for i in range(len(lst)-1):
            if lst[i] > lst[i+1]:
                return False
        return True

speechless-coding-7b-16k-tora. fail_base: True, fail_plus: True

  def is_sorted(lst):
    if len(lst) <= 1:
        return True
    if lst[0] > lst[1]:
        return False
    for i in range(1, len(lst)-1):
        if lst[i] > lst[i+1]:
            return False
    return True

claude-3-opus-20240229. fail_base: True, fail_plus: True

  Here's the completed code wrapped in a markdown block:

```python
def is_sorted(lst):
    '''
    Given a list of numbers, return whether or not they are sorted
    in ascending order. If list has more than 1 duplicate of the same
    number, return False. Assume no negative numbers and only integers.

    Examples
    is_sorted([5]) ➞ True
    is_sorted([1, 2, 3, 4, 5]) ➞ True
    is_sorted([1, 3, 2, 4, 5]) ➞ False
    is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
    is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
    is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
    is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
    is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
    '''
    if len(lst) <= 1:
        return True
    
    for i in range(1, len(lst)):
        if lst[i] < lst[i-1]:
            return False
        elif lst[i] == lst[i-1] and lst.count(lst[i]) > 1:
            return False
    
    return True

mixtral-8x7b-instruct. fail_base: True, fail_plus: True

  def is_sorted(lst):
    '''
    Given a list of numbers, return whether or not they are sorted
    in ascending order. If list has more than 1 duplicate of the same
    number, return False. Assume no negative numbers and only integers.

    Examples
    is_sorted([5]) ➞ True
    is_sorted([1, 2, 3, 4, 5]) ➞ True
    is_sorted([1, 3, 2, 4, 5]) ➞ False
    is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
    is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
    is_sorted([1, 2, 3, 4, 5, 6, 7]) 

mixtral-8x22b-instruct-v0.1. fail_base: True, fail_plus: True

  def is_sorted(lst):
    '''
    Given a list of numbers, return whether or not they are sorted
    in ascending order. If list has more than 1 duplicate of the same
    number, return False. Assume no negative numbers and only integers.

    Examples
    is_sorted([5]) ➞ True
    is_sorted([1, 2, 3, 4, 5]) ➞ True
    is_sorted([1, 3, 2, 4, 5]) ➞ False
    is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
    is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
    is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
    is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
    is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
    '''
    # Check if list is empty or has only one element
    if len(lst) <= 1:
        return True

    # Check if list is sorted and has no more than 1 duplicate of the same number
    for i in range(len(lst) - 1):
        if lst[i] >= lst[i + 1] or lst[i] == lst[i + 1] and lst[i] in lst[:i]:
            return False

    return True

# Test cases

code-llama-multi-34b. fail_base: True, fail_plus: True

  
def is_sorted(lst):
    '''
    Given a list of numbers, return whether or not they are sorted
    in ascending order. If list has more than 1 duplicate of the same
    number, return False. Assume no negative numbers and only integers.

    Examples
    is_sorted([5]) ➞ True
    is_sorted([1, 2, 3, 4, 5]) ➞ True
    is_sorted([1, 3, 2, 4, 5]) ➞ False
    is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
    is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
    is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
    is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
    is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
    '''
    if len(lst) == 1:
        return True
    if lst[0] > lst[1]:
        return False
    return is_sorted(lst[1:])


def is_sorted(lst):
    '''
    Given a list of numbers, return whether or not they are sorted
    in ascending order. If list has more than 1 duplicate of the same
    number, return False. Assume no negative numbers and only integers.

    Examples
    is_sorted([5]) ➞ True
    is_sorted([1, 2, 3, 4, 5]) ➞ True
    is_sorted([1, 3, 2, 4, 5]) ➞ False
    is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
    is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
    is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
    is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
    is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
    '''
    if len(lst) == 1:
        return True
    if lst[0] > lst[1]:
        return False
    if lst[0] == lst[1]:
        return False
    return is_sorted(lst[1:])


def is_sorted(lst):
    '''
    Given a list of numbers, return whether or not they are sorted
    in ascending order. If list has more than 1 duplicate of the same
    number, return False. Assume no negative numbers and only integers.

    Examples
    is_sorted([5]) ➞ True
    is_sorted([1, 2, 3, 4, 5]) ➞ True
    is_sorted([1, 3, 2, 4, 5]) ➞ False
    is_

Qwen--Qwen1.5-72B-Chat. fail_base: True, fail_plus: True

  def is_sorted(lst):
    if len(lst) < 2:
        return True
    if len(set(lst)) != len(lst):
        return False
    for i in range(len(lst) - 1):
        if lst[i] > lst[i + 1]:
            return False
    return True

# Test cases

mistral-large-latest. fail_base: False, fail_plus: False

  Sure, I can help with that. Here's a Python function that should solve the problem:

```python
def is_sorted(lst):
    '''
    Given a list of numbers, return whether or not they are sorted
    in ascending order. If list has more than 1 duplicate of the same
    number, return False. Assume no negative numbers and only integers.
    '''
    if len(lst) == 1:
        return True

    for i in range(1, len(lst)):
        if lst[i] < lst[i-1]:
            return False
        elif lst[i] == lst[i-1]:
            if i < len(lst) - 1 and lst[i] == lst[i+1]:
                return False

    return True
```

This function works by iterating over the list and comparing each element to the previous one. If it finds a pair where the current element is less than the previous one, it returns False, indicating that the list is not sorted in ascending order. If it finds a pair where the current element is equal to the previous one, it checks if the next element is also equal. If it is, it returns False, indicating that there are more than 1 duplicate of the same number. If it gets through the entire list without finding any such pairs, it returns True, indicating that the list is sorted in ascending order and contains at most 1 duplicate of each number.

HuggingFaceH4--starchat2-15b-v0.1. fail_base: True, fail_plus: True

  def is_sorted(lst):
    '''
    Given a list of numbers, return whether or not they are sorted
    in ascending order. If list has more than 1 duplicate of the same
    number, return False. Assume no negative numbers and only integers.

    Examples
    is_sorted([5]) ➞ True
    is_sorted([1, 2, 3, 4, 5]) ➞ True
    is_sorted([1, 3, 2, 4, 5]) ➞ False
    is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
    is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
    is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
    is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
    is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
    '''
    # Check if list is sorted
    if lst != sorted(lst):
        return False

    # Check if there are more than 1 duplicate of the same number
    for i in range(len(lst) - 1):
        if lst[i] == lst[i + 1]:
            return False

    return True

# Test cases

codegemma-7b. fail_base: True, fail_plus: True

  def is_sorted(lst):
    if len(lst) < 2:
        return True
    
    if lst[0] != lst[1]:
        return False
    
    for i in range(1, len(lst)-1):
        if lst[i] > lst[i+1]:
            return False
    
    return True

print(is_sorted([5])) # ➞ True
print(is_sorted([1, 2, 3, 4, 5])) # ➞ True
print(is_sorted([1, 3, 2, 4, 5])) # ➞ False
print(is_sorted([1, 2, 3, 4, 5, 6])) # ➞ True
print(is_sorted([1, 2, 3, 4, 5, 6, 7])) # ➞ True
print(is_sorted([1, 3, 2, 4, 5, 6, 7])) # ➞ False
print(is_sorted([1, 2, 2, 3, 3, 4])) # ➞ True
print(is_sorted([1, 2, 2, 2, 3, 4])) # ➞ False

code-llama-multi-13b. fail_base: True, fail_plus: True

  
def is_sorted(lst):
    '''
    Given a list of numbers, return whether or not they are sorted
    in ascending order. If list has more than 1 duplicate of the same
    number, return False. Assume no negative numbers and only integers.

    Examples
    is_sorted([5]) ➞ True
    is_sorted([1, 2, 3, 4, 5]) ➞ True
    is_sorted([1, 3, 2, 4, 5]) ➞ False
    is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
    is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
    is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
    is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
    is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
    '''
    # Your code here
    if len(lst) == 1:
        return True
    elif len(lst) == 2:
        return lst[0] < lst[1]
    else:
        for i in range(len(lst) - 1):
            if lst[i] > lst[i + 1]:
                return False
            elif lst[i] == lst[i + 1]:
                return False
        return True


print(is_sorted([1, 2, 3, 4, 5, 6, 7]))
print(is_sorted([1, 2, 3, 4, 5, 6, 7]))
print(is_sorted([1, 2, 3, 4, 5, 6, 7]))
print(is_sorted([1, 2, 3, 4, 5, 6, 7]))
print(is_sorted([1, 2, 3, 4, 5, 6, 7]))
print(is_sorted([1, 2, 3, 4, 5, 6, 7]))
print(is_sorted([1, 2, 3, 4, 5, 6, 7]))
print(is_sorted([1, 2, 3, 4, 5, 6, 7]))
print(is_sorted([1, 2, 3, 4, 5, 6, 7]))
print(is_sorted([1, 2, 3, 4, 5, 6, 7]))
print(is_sorted([1, 2, 3, 4, 5, 6, 7]))
print(is_sorted([1, 2, 3, 4, 5, 6, 7]))
print(is_sorted([1, 2, 3, 4, 5, 6, 7]))
print(is_sorted([1, 2, 3, 4, 5, 6, 7]))
print(is_sorted([1, 2, 3, 4, 5, 6, 7]))

deepseek-coder-6.7b-instruct. fail_base: True, fail_plus: True

  Here is the Python function in a markdown style code block:

```python
def is_sorted(lst):
    '''
    Given a list of numbers, return whether or not they are sorted
    in ascending order. If list has more than 1 duplicate of the same
    number, return False. Assume no negative numbers and only integers.

    Examples
    is_sorted([5]) ➞ True
    is_sorted([1, 2, 3, 4, 5]) ➞ True
    is_sorted([1, 3, 2, 4, 5]) ➞ False
    is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
    is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
    is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
    is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
    is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
    '''
    for i in range(len(lst) - 1):
        if lst[i] >= lst[i + 1]:
            return False
    return True
```

This function works by iterating over the list and checking if each element is greater than or equal to the next one. If it finds an element that is not, it returns `False`. If it doesn't find any such elements, it returns `True`, indicating that the list is sorted in ascending order.

open-hermes-2.5-code-290k-13b. fail_base: True, fail_plus: True

  
def is_sorted(lst):
    # Check if list is empty or has only one element
    if len(lst) < 2:
        return True

    # Check if list has duplicates
    if len(lst) != len(set(lst)):
        return False

    # Check if list is sorted in ascending order
    for i in range(len(lst) - 1):
        if lst[i] > lst[i + 1]:
            return False

    return True

# Test cases
print(is_sorted([5]))  # ➞ True
print(is_sorted([1, 2, 3, 4, 5]))  # ➞ True
print(is_sorted([1, 3, 2, 4, 5]))  # ➞ False
print(is_sorted([1, 2, 3, 4, 5, 6]))  # ➞ True
print(is_sorted([1, 2, 3, 4, 5, 6, 7]))  # ➞ True
print(is_sorted([1, 3, 2, 4, 5, 6, 7]))  # ➞ False
print(is_sorted([1, 2, 2, 3, 3, 4]))  # ➞ True
print(is_sorted([1, 2, 2, 2, 3, 4]))  # ➞ False

speechless-coder-ds-6.7b. fail_base: True, fail_plus: True

  def is_sorted(lst):
    if len(lst) == 1:
        return True
    for i in range(len(lst) - 1):
        if lst[i] > lst[i + 1]:
            return False
    return True

codegemma-7b-it. fail_base: True, fail_plus: True

  def is_sorted(lst):
    '''
    Given a list of numbers, return whether or not they are sorted
    in ascending order. If list has more than 1 duplicate of the same
    number, return False. Assume no negative numbers and only integers.

    Examples
    is_sorted([5]) ➞ True
    is_sorted([1, 2, 3, 4, 5]) ➞ True
    is_sorted([1, 3, 2, 4, 5]) ➞ False
    is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
    is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
    is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
    is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
    is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
    '''
    if len(lst) == 1:
        return True
    for i in range(len(lst) - 1):
        if lst[i] > lst[i + 1]:
            return False
    return True

deepseek-coder-33b. fail_base: True, fail_plus: True

  
def is_sorted(lst):
    '''
    Given a list of numbers, return whether or not they are sorted
    in ascending order. If list has more than 1 duplicate of the same
    number, return False. Assume no negative numbers and only integers.

    Examples
    is_sorted([5]) ➞ True
    is_sorted([1, 2, 3, 4, 5]) ➞ True
    is_sorted([1, 3, 2, 4, 5]) ➞ False
    is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
    is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
    is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
    is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
    is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
    '''
    if len(lst) == 1:
        return True
    for i in range(len(lst) - 1):
        if lst[i] > lst[i + 1]:
            return False
    return True

mistralai--Mistral-7B-Instruct-v0.2. fail_base: False, fail_plus: True

  
def is_sorted(lst):
    '''
    Given a list of numbers, return whether or not they are sorted
    in ascending order. If list has more than 1 duplicate of the same
    number, return False. Assume no negative numbers and only integers.

    Examples
    is_sorted([5]) ➞ True
    is_sorted([1, 2, 3, 4, 5]) ➞ True
    is_sorted([1, 3, 2, 4, 5]) ➞ False
    is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
    is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
    is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
    is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
    is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
    '''
def is_sorted(lst):
    '''
    Given a list of numbers, return whether or not they are sorted
    in ascending order. If list has more than 1 duplicate of the same
    number, return False. Assume no negative numbers and only integers.
    '''
    if not lst:
        return True
    for i in range(1, len(lst)):
        if lst[i] < lst[i-1]:
            return False
        if i > 1 and lst[i] == lst[i-1]:
            count = 1
            for j in range(i+1, len(lst)):
                if lst[i] == lst[j]:
                    count += 1
                    if count > 1:
                        return False
            return True
    return True

xwincoder-34b. fail_base: True, fail_plus: True

  def is_sorted(lst):
    '''
    Given a list of numbers, return whether or not they are sorted
    in ascending order. If list has more than 1 duplicate of the same
    number, return False. Assume no negative numbers and only integers.

    Examples
    is_sorted([5]) ➞ True
    is_sorted([1, 2, 3, 4, 5]) ➞ True
    is_sorted([1, 3, 2, 4, 5]) ➞ False
    is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
    is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
    is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
    is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
    is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
    '''
    for i in range(len(lst) - 1):
        if lst[i] > lst[i + 1]:
            return False
        if lst[i] == lst[i + 1] and (i == 0 or lst[i - 1] != lst[i]):
            return False
    return True

code-13b. fail_base: True, fail_plus: True

  def is_sorted(lst):
    if len(lst) == 0:
        return True
    if len(lst) == 1:
        return True
    if lst[0] == lst[1]:
        return is_sorted(lst[1:])
    if lst[0] < lst[1]:
        return is_sorted(lst[1:])
    return False

# Testing the function
print(is_sorted([5])) # ➞ True
print(is_sorted([1, 2, 3, 4, 5])) # ➞ True
print(is_sorted([1, 3, 2, 4, 5, 6])) # ➞ True
print(is_sorted([1, 2, 3, 4, 5, 6, 7])) # ➞ True
print(is_sorted([1, 3, 2, 4, 5, 6, 7])) # ➞ False
print(is_sorted([1, 2, 2, 2, 3, 4])) # ➞ True
print(is_sorted([1, 2, 2, 2, 3, 4])) # ➞ False

wizardcoder-15b. fail_base: True, fail_plus: True

  Here's the Python script for the problem:

```python
def is_sorted(lst):
    '''
    Given a list of numbers, return whether or not they are sorted
    in ascending order. If list has more than 1 duplicate of the same
    number, return False. Assume no negative numbers and only integers.

    Examples
    is_sorted([5]) ➞ True
    is_sorted([1, 2, 3, 4, 5]) ➞ True
    is_sorted([1, 3, 2, 4, 5]) ➞ False
    is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
    is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
    is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
    is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
    is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
    '''
    for i in range(len(lst)-1):
        if lst[i] > lst[i+1]:
            return False
        elif lst.count(lst[i]) > 1:
            return False
    return True
```

The function `is_sorted` takes a list of numbers as input and returns `True` if the list is sorted in ascending order and has no more than 1 duplicate of the same number. Otherwise, it returns `False`.

The function first checks if the list is sorted in ascending order by iterating through the list and comparing each element with the next element. If the next element is smaller than the current element, the function returns `False`. If the function reaches the end of the list without returning `False`, it means the list is sorted and the function returns `True`.

If the list has more than 1 duplicate of the same number, the function checks if there are any duplicates by using the `count` method. If the count of an element is greater than 1, the function returns `False`. If the function reaches the end of the list without returning `False`, it means the list has no more than 1 duplicate of the same number and the function returns `True`.

mistral-7b-codealpaca. fail_base: True, fail_plus: True

  
def is_sorted(lst):
    '''
    Given a list of numbers, return whether or not they are sorted
    in ascending order. If list has more than 1 duplicate of the same
    number, return False. Assume no negative numbers and only integers.

    Examples
    is_sorted([5]) ➞ True
    is_sorted([1, 2, 3, 4, 5]) ➞ True
    is_sorted([1, 3, 2, 4, 5]) ➞ False
    is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
    is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
    is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
    is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
    is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
    '''
    if len(set(lst)) != len(lst):
        return False
    return True

deepseek-coder-33b-instruct. fail_base: True, fail_plus: True

  Here is the Python function implemented in a markdown style code block:

```python
def is_sorted(lst):
    '''
    Given a list of numbers, return whether or not they are sorted
    in ascending order. If list has more than 1 duplicate of the same
    number, return False. Assume no negative numbers and only integers.

    Examples
    is_sorted([5]) ➞ True
    is_sorted([1, 2, 3, 4, 5]) ➞ True
    is_sorted([1, 3, 2, 4, 5]) ➞ False
    is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
    is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
    is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
    is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
    is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
    '''
    return lst == sorted(lst) and len(lst) == len(set(lst))
```

This function works by first checking if the list is equal to its sorted version. If it is, that means the list is sorted in ascending order. Then it checks if the length of the list is equal to the length of the set of the list. If it is, that means there are no duplicates in the list. If both conditions are true, the function returns True, otherwise it returns False.
<|EOT|>

phi-2. fail_base: True, fail_plus: True

  
def is_sorted(lst):
    '''
    Given a list of numbers, return whether or not they are sorted
    in ascending order. If list has more than 1 duplicate of the same
    number, return False. Assume no negative numbers and only integers.

    Examples
    is_sorted([5]) ➞ True
    is_sorted([1, 2, 3, 4, 5]) ➞ True
    is_sorted([1, 3, 2, 4, 5]) ➞ False
    is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
    is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
    is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
    is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
    is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
    '''
    if len(lst) == 1:
        return True
    elif len(lst) == 2:
        return lst[0] <= lst[1]
    else:
        for i in range(len(lst) - 1):
            if lst[i] > lst[i + 1]:
                return False
        return True

def is_sorted_recursive(lst):
    '''
    Given a list of numbers, return whether or not they are sorted
    in ascending order. If list has more than 1 duplicate of the same
    number, return False. Assume no negative numbers and only integers.

    Examples
    is_sorted_recursive([5]) ➞ True
    is_sorted_recursive([1, 2, 3, 4, 5]) ➞ True
    is_sorted_recursive([1, 3, 2, 4, 5]) ➞ False
    is_sorted_recursive([1, 2, 3, 4, 5, 6]) ➞ True
    is_sorted_recursive([1, 2, 3, 4, 5, 6, 7]) ➞ True
    is_sorted_recursive([1, 3, 2, 4, 5, 6, 7]) ➞ False
    is_sorted_recursive([1, 2, 2, 3, 3, 4]) ➞ True
    is_sorted_recursive([1, 2, 2, 2, 3, 4]) ➞ False
    '''
    if len(lst) == 1:
        return True
    elif len(lst) == 2:
        return lst[0] <= lst[1]
    else:
        return lst[0] <= is_sorted_recursive(lst[1:])

def is_sorted_recursive_2(lst):
    '''
    Given a list of numbers, return whether or not they are sorted
    in ascending order. If list has more than 1 duplicate of the same
    number, return False. Assume no negative numbers and only integers.

    Examples
    is_sorted_recursive_2([5]) ➞ True
    is

bigcode--starcoder2-15b-instruct-v0.1. fail_base: True, fail_plus: True

  def is_sorted(lst):
    '''
    Given a list of numbers, return whether or not they are sorted
    in ascending order. If list has more than 1 duplicate of the same
    number, return False. Assume no negative numbers and only integers.

    Examples
    is_sorted([5]) ➞ True
    is_sorted([1, 2, 3, 4, 5]) ➞ True
    is_sorted([1, 3, 2, 4, 5]) ➞ False
    is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
    is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
    is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
    is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
    is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
    '''
    if len(lst) <= 1:
        return True
    prev = lst[0]
    for curr in lst[1:]:
        if curr < prev:
            return False
        if curr == prev:
            return False
        prev = curr
    return True

white-rabbit-neo-33b-v1. fail_base: True, fail_plus: True

  def is_sorted(lst):
    # Check if the list is sorted and has no duplicates
    return all(lst[i] < lst[i+1] for i in range(len(lst)-1)) and len(lst) == len(set(lst))

microsoft--Phi-3-mini-4k-instruct. fail_base: True, fail_plus: True

  def is_sorted(lst):
    """
    Given a list of numbers, return whether or not they are sorted
    in ascending order. If list has more than 1 duplicate of the same
    number, return False. Assume no negative numbers and only integers.

    :param lst: List of integers
    :return: Boolean indicating if the list is sorted and has no duplicates
    """
    # Check for duplicates
    if len(lst) != len(set(lst)):
        return False

    # Check if the list is sorted
    for i in range(len(lst) - 1):
        if lst[i] > lst[i + 1]:
            return False

    return True


# Test cases

speechless-codellama-34b. fail_base: True, fail_plus: True

  def is_sorted(lst):
    for i in range(len(lst)-1):
        if lst[i] == lst[i+1]:
            return False
        elif lst[i] > lst[i+1]:
            return False
    return True
```

This function takes a list of integers as input and returns `True` if the list is sorted in ascending order and has no more than one duplicate of the same number. Otherwise, it returns `False`. The function iterates through the list and checks if the current element is equal to the next element or greater than the next element. If either condition is true, the function returns `False`. If the function reaches the end of the list without returning `False`, it returns `True`.

meta-llama-3-70b-instruct. fail_base: True, fail_plus: True

  def is_sorted(lst):
    return lst == sorted(lst, key=lambda x: (x, lst.count(x)))

print(is_sorted([5]))  # ➞ True
print(is_sorted([1, 2, 3, 4, 5]))  # ➞ True
print(is_sorted([1, 3, 2, 4, 5]))  # ➞ False
print(is_sorted([1, 2, 3, 4, 5, 6]))  # ➞ True
print(is_sorted([1, 2, 3, 4, 5, 6, 7]))  # ➞ True
print(is_sorted([1, 3, 2, 4, 5, 6, 7]))  # ➞ False
print(is_sorted([1, 2, 2, 3, 3, 4]))  # ➞ True
print(is_sorted([1, 2, 2, 2, 3, 4]))  # ➞ False

code-llama-70b-instruct. fail_base: True, fail_plus: True

  def is_sorted(lst):
    # Check if the list is empty
    if not lst:
        return True

    # Check if the list has more than 1 duplicate of the same number
    for i in lst:
        if lst.count(i) > 1:
            return False

    # Check if the list is sorted in ascending order
    for i in range(len(lst) - 1):
        if lst[i] > lst[i + 1]:
            return False

    return True

# Test cases
print(is_sorted([5]))  # Output: True
print(is_sorted([1, 2, 3, 4, 5]))  # Output: True
print(is_sorted([1, 3, 2, 4, 5]))  # Output: False
print(is_sorted([1, 2, 3, 4, 5, 6]))  # Output: True
print(is_sorted([1, 2, 3, 4, 5, 6, 7]))  # Output: True
print(is_sorted([1, 3, 2, 4, 5, 6, 7]))  # Output: False
print(is_sorted([1, 2, 2, 3, 3, 4]))  # Output: True
print(is_sorted([1, 2, 2, 2, 3, 4]))  # Output: False

opencodeinterpreter-ds-33b. fail_base: True, fail_plus: True

  ```python
def is_sorted(lst):
    if len(lst) != len(set(lst)):
        return False
    return lst == sorted(lst)

openchat. fail_base: True, fail_plus: True

  def is_sorted(lst):
    for i in range(len(lst) - 1):
        if lst[i] > lst[i + 1]:
            return False
    return True

deepseek-coder-7b-instruct-v1.5. fail_base: True, fail_plus: True

  def is_sorted(lst):
    '''
    Given a list of numbers, return whether or not they are sorted
    in ascending order. If list has more than 1 duplicate of the same
    number, return False. Assume no negative numbers and only integers.

    Examples
    is_sorted([5]) ➞ True
    is_sorted([1, 2, 3, 4, 5]) ➞ True
    is_sorted([1, 3, 2, 4, 5]) ➞ False
    is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
    is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
    is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
    is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
    is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
    '''
    if len(lst) < 2:
        return True
    for i in range(len(lst) - 1):
        if lst[i] >= lst[i + 1]:
            return False
    return True

speechless-starcoder2-7b. fail_base: True, fail_plus: True

  def is_sorted(lst):
    # Check if list is empty
    if not lst:
        return True
    # Check if list has more than 1 duplicate of the same number
    if len(lst) != len(set(lst)):
        return False
    # Check if list is sorted in ascending order
    return lst == sorted(lst)

wizardcoder-7b. fail_base: True, fail_plus: True

  Here's the Python script for the given problem:

def is_sorted(lst):
    for i in range(len(lst)-1):
        if lst[i] >= lst[i+1]:
            return False
    return True

# Test cases
print(is_sorted([5])) # True
print(is_sorted([1, 2, 3, 4, 5])) # True
print(is_sorted([1, 3, 2, 4, 5])) # False
print(is_sorted([1, 2, 3, 4, 5, 6])) # True
print(is_sorted([1, 3, 2, 4, 5, 6, 7])) # True
print(is_sorted([1, 2, 2, 3, 4])) # True
print(is_sorted([1, 2, 2, 2, 3, 4])) # False 

octocoder. fail_base: True, fail_plus: True

  
def is_sorted(lst):
    '''
    Given a list of numbers, return whether or not they are sorted
    in ascending order. If list has more than 1 duplicate of the same
    number, return False. Assume no negative numbers and only integers.

    Examples
    is_sorted([5]) ➞ True
    is_sorted([1, 2, 3, 4, 5]) ➞ True
    is_sorted([1, 3, 2, 4, 5]) ➞ False
    is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
    is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
    is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
    is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
    is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
    '''

    if len(lst) == 1:
        return True
    elif lst[0] > lst[1]:
        return False
    else:
        return is_sorted(lst[1:])

gemma-1.1-7b-it. fail_base: True, fail_plus: True

  def is_sorted(lst):
    '''
    Given a list of numbers, return whether or not they are sorted
    in ascending order. If list has more than 1 duplicate of the same
    number, return False. Assume no negative numbers and only integers.

    Examples
    is_sorted([5]) ➞ True
    is_sorted([1, 2, 3, 4, 5]) ➞ True
    is_sorted([1, 3, 2, 4, 5]) ➞ False
    is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
    is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
    is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
    is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
    is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
    '''
    if len(lst) <= 1:
        return True
    for i in range(len(lst) - 1):
        if lst[i] > lst[i + 1] or (lst[i] == lst[i + 1] and lst.count(lst[i]) > 1):
            return False
    return True

gpt-3.5-turbo. fail_base: True, fail_plus: True

  Here is the code to complete the problem:

```python
def is_sorted(lst):
    '''
    Given a list of numbers, return whether or not they are sorted
    in ascending order. If list has more than 1 duplicate of the same
    number, return False. Assume no negative numbers and only integers.

    Examples
    is_sorted([5]) ➞ True
    is_sorted([1, 2, 3, 4, 5]) ➞ True
    is_sorted([1, 3, 2, 4, 5]) ➞ False
    is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
    is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
    is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
    is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
    is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
    '''
    if len(lst) <= 1:
        return True

    for i in range(1, len(lst)):
        if lst[i] <= lst[i-1]:
            return False

    return True
```

This code defines a function `is_sorted` that takes a list `lst` as input. It checks if the length of the list is less than or equal to 1, and if so, returns `True` since a list with 0 or 1 element is considered sorted. Otherwise, it iterates through the list starting from the second element and checks if each element is greater than the previous element. If any element is less than or equal to the previous element, it returns `False` since the list is not sorted. If the loop completes without finding any out-of-order elements, it returns `True` indicating that the list is sorted.

codebooga-34b. fail_base: True, fail_plus: True

  
def is_sorted(lst):
    '''
    Given a list of numbers, return whether or not they are sorted
    in ascending order. If list has more than 1 duplicate of the same
    number, return False. Assume no negative numbers and only integers.

    Examples
    is_sorted([5]) ➞ True
    is_sorted([1, 2, 3, 4, 5]) ➞ True
    is_sorted([1, 3, 2, 4, 5]) ➞ False
    is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
    is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
    is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
    is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
    is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
    '''
    if len(lst) == 1:
        return True
    for i in range(len(lst)-1):
        if lst[i] > lst[i+1]:
            return False
        if lst[i] == lst[i+1]:
            if lst.count(lst[i]) > 1:
                return False
    return True

deepseek-coder-1.3b-instruct. fail_base: True, fail_plus: True

  Here is the implementation of the function in markdown style:

```python
def is_sorted(lst):
    '''
    Given a list of numbers, return whether or not they are sorted
    in ascending order. If list has more than 1 duplicate of the same
    number, return False. Assume no negative numbers and only integers.

    Examples:
    is_sorted([5]) ➞ True
    is_sorted([1, 2, 3, 4, 5]) ➞ True
    is_sorted([1, 3, 2, 4, 5]) ➞ False
    is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
    is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
    is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
    is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
    is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
    '''

    # Check if the list is empty
    if not lst:
        return True

    # Check if the list has more than 1 duplicate of the same number
    if len(lst) != len(set(lst)):
        return False

    # Check if the list is sorted in ascending order
    for i in range(len(lst) - 1):
        if lst[i] > lst[i + 1]:
            return False

    return True
```

This function first checks if the list is empty, if it is, it returns True because an empty list is considered sorted. Then it checks if the list has more than 1 duplicate of the same number, if it does, it returns False. After that, it checks if the list is sorted in ascending order, if it is, it returns True. Otherwise, it returns False.

speechless-mistral-7b. fail_base: True, fail_plus: True

  def is_sorted(lst):
    if len(lst) == 1:
        return True
    for i in range(len(lst) - 1):
        if lst[i] > lst[i + 1]:
            return False
    return True
```

xdan-l1-chat. fail_base: True, fail_plus: True

  def is_sorted(lst):
    for i in range(1, len(lst)):
        if lst[i] < lst[i - 1]:
            return False
    return True

solar-10.7b-instruct. fail_base: True, fail_plus: True

  
def is_sorted(lst):
    '''
    Given a list of numbers, return whether or not they are sorted
    in ascending order. If list has more than 1 duplicate of the same
    number, return False. Assume no negative numbers and only integers.

    Examples
    is_sorted([5]) ➞ True
    is_sorted([1, 2, 3, 4, 5]) ➞ True
    is_sorted([1, 3, 2, 4, 5]) ➞ False
    is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
    is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
    is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
    is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
    is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
    '''
def is_sorted(lst):
    if not lst:
        return True
    if lst[0] < 0:
        return False
    for i in range(1, len(lst)):
        if lst[i-1] >= lst[i]:
            return False
    # Check for more than 1 duplicate of the same number
    counts = {}
    for num in set(lst):
        counts[num] = lst.count(num)
    for value in counts.values():
        if value > 1:
            return False
    return True

claude-3-sonnet-20240229. fail_base: False, fail_plus: False

  Here's the code to solve the problem:

```python
def is_sorted(lst):
    '''
    Given a list of numbers, return whether or not they are sorted
    in ascending order. If list has more than 1 duplicate of the same
    number, return False. Assume no negative numbers and only integers.

    Examples
    is_sorted([5]) ➞ True
    is_sorted([1, 2, 3, 4, 5]) ➞ True
    is_sorted([1, 3, 2, 4, 5]) ➞ False
    is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
    is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
    is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
    is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
    is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
    '''
    if len(lst) <= 1:
        return True

    prev = lst[0]
    duplicates = 0

    for num in lst[1:]:
        if num < prev:
            return False
        elif num == prev:
            duplicates += 1
            if duplicates > 1:
                return False
        else:
            prev = num
            duplicates = 0

    return True

code-33b. fail_base: True, fail_plus: True

  def is_sorted(lst):
    # Check if list is empty or has single element, return True directly
    if len(lst) < 2:
        return True

    # Check if every element in the list is the same
    if len(set(lst)) == 1:
        return True

    # Check if list has more than 1 duplicate of the same number
    if len(lst) != len(set(lst)):
        return False

    # Check if list is sorted in ascending order
    return all(lst[i] <= lst[i + 1] for i in range(len(lst) - 1))

starcoder2-15b-oci. fail_base: True, fail_plus: True

  
def is_sorted(lst):
    '''
    Given a list of numbers, return whether or not they are sorted
    in ascending order. If list has more than 1 duplicate of the same
    number, return False. Assume no negative numbers and only integers.

    Examples
    is_sorted([5]) ➞ True
    is_sorted([1, 2, 3, 4, 5]) ➞ True
    is_sorted([1, 3, 2, 4, 5]) ➞ False
    is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
    is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
    is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
    is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
    is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
    '''

    # Your code here

def is_sorted(lst):
    return sorted(lst) == lst

def is_sorted(lst):
    return all(lst[i] <= lst[i+1] for i in range(len(lst)-1))

def is_sorted(lst):
    return all(lst[i] <= lst[i+1] for i in range(len(lst)-1)) and len(set(lst)) == len(lst)

def is_sorted(lst):
    return all(lst[i] <= lst[i+1] for i in range(len(lst)-1)) and len(lst) == len(set(lst))

def is_sorted(lst):
    return all(lst[i] <= lst[i+1] for i in range(len(lst)-1)) and len(lst) == len(set(lst))

def is_sorted(lst):
    return all(lst[i] <= lst[i+1] for i in range(len(lst)-1)) and len(lst) == len(set(lst))

def is_sorted(lst):
    return all(lst[i] <= lst[i+1] for i in range(len(lst)-1)) and len(lst) == len(set(lst))

def is_sorted(lst):
    return all(lst[i] <= lst[i+1] for i in range(len(lst)-1)) and len(lst) == len(set(lst))

def is_sorted(lst):
    return all(lst[i] <= lst[i+1] for i in range(len(lst)-1)) and len(lst) == len(set(lst))

def is_sorted(lst):
    return all(lst[i] <= lst[i+1] for i in range(len(lst)-1)) and len(lst) == len(set(lst))

def is_sorted(lst):
    return all(lst[i] <= lst[i+1] for i in range(len(lst)-1)) and len(lst) == len(set(lst))

def is_sorted(lst):
    return all(lst[i] <= lst[i+1] for i in range(len(lst

speechless-starcoder2-15b. fail_base: True, fail_plus: True

  def is_sorted(lst):
    if len(lst) == 1:
        return True
    for i in range(len(lst) - 1):
        if lst[i] > lst[i + 1]:
            return False
    return True

python-code-13b. fail_base: True, fail_plus: True

  def is_sorted(lst):
    # Check if list has more than 1 duplicate of the same number
    if len(lst) < 2:
        return True
    else:
        for i in range(1, len(lst)):
            if lst[i] == lst[i-1]:
                return False
    # Check if list is sorted in ascending order
    for i in range(1, len(lst)):
        if lst[i] < lst[i-1]:
            return False
    return True

opencodeinterpreter-ds-6.7b. fail_base: True, fail_plus: True

  ```python
def is_sorted(lst):
    '''
    Given a list of numbers, return whether or not they are sorted
    in ascending order. If list has more than 1 duplicate of the same
    number, return False. Assume no negative numbers and only integers.

    Examples
    is_sorted([5]) ➞ True
    is_sorted([1, 2, 3, 4, 5]) ➞ True
    is_sorted([1, 3, 2, 4, 5]) ➞ False
    is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
    is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
    is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
    is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
    is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
    '''
    for i in range(len(lst) - 1):
        if lst[i] > lst[i + 1]:
            return False
    return True