def is_sorted(lst):
'''
Given a list of numbers, return whether or not they are sorted
in ascending order. If list has more than 1 duplicate of the same
number, return False. Assume no negative numbers and only integers.
Examples
is_sorted([5]) ➞ True
is_sorted([1, 2, 3, 4, 5]) ➞ True
is_sorted([1, 3, 2, 4, 5]) ➞ False
is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
'''
count = dict()
for x in lst:
if x not in count: count[x] = 0
count[x] += 1
if count[x] > 2: return False
return lst == sorted(lst)
[[[5]], [[1, 2, 3, 4, 5]], [[1, 3, 2, 4, 5]], [[1, 2, 3, 4, 5, 6]], [[1, 2, 3, 4, 5, 6, 7]], [[1, 3, 2, 4, 5, 6, 7]], [[]], [[1]], [[3, 2, 1]], [[1, 2, 2, 2, 3, 4]], [[1, 2, 3, 3, 3, 4]], [[1, 2, 2, 3, 3, 4]], [[1, 2, 3, 4]]]
[[[1, 2, 3, 4, 5, 6, 7, 8]], [[8, 7, 6, 5, 4, 3, 2, 1]], [[1, 2, 2, 2, 2, 3, 4]], [[1, 1, 2, 2, 3, 3, 4]], [[1, 2, 3, 3, 3, 3, 3]], [[3, 3, 3, 3, 2, 2, 2, 2, 1, 1]], [[1, 1, 2, 3, 4]], [[4, 3, 2, 1]], [[1, 2, 2, 3, 4, 4, 5]], [[1, 0, 2, 3, 4]], [[1, 1, 2, 3, 5]], [[4, 3, 2]], [[4, 1, 3, 2]], [[1, 0, 2, 3]], [[1, 1, 2, 3, 4, 4]], [[1, 2, 3, 4, 5, 6, 7, 4, 8, 8]], [[8, 7, 6, 5, 4, 1, 3, 2]], [[8, 6, 5, 4, 3, 2, 1]], [[1, 1, 2, 2, 3, 3, 5, 4]], [[8, 6, 4, 3, 2, 1, 6]], [[5, 3, 2]], [[1, 2, 3, 6, 4, 5, 6, 7, 4, 8, 8]], [[1, 2, 3, 4, 5, 6, 4, 8]], [[8, 7, 6, 5, 4, 3, 2, 1, 5]], [[1, 2, 3, 3, 3, 3, 3, 3]], [[8, 8, 6, 5, 4, 3, 2, 1]], [[8, 8, 6, 5, 7, 6, 2, 1]], [[8, 7, 6, 5, 4, 3, 2, 6, 5]], [[8, 8, 6, 5, 4, 2, 2, 1, 8, 4]], [[8, 6, 8, 6, 5, 4, 3, 2, 1]], [[8, 8, 6, 5, 4, 2, 2, 1, 8, 4, 5, 4]], [[1, 1, 2, 2, 2, 3, 4]], [[8, 1, 6, 8, 6, 5, 4, 3, 2, 1]], [[8, 7, 4, 3, 2, 6, 5]], [[1, 0, 2, 4, 4]], [[1, 2, 3, 4, 5, 6, 7, 4, 8, 8, 2]], [[1, 2, 1, 2, 2, 3, 3, 5, 4]], [[3, 1, 3, 2]], [[1, 1, 2, 2, 2, 3, 4, 3]], [[4, 3, 2, 4, 3]], [[8, 8, 6, 5, 4, 3, 2, 1, 6]], [[1, 2, 2, 3, 7, 4, 5]], [[8, 6, 8, 6, 5, 4, 3, 2, 8, 1]], [[1, 2, 2, 2, 3, 3, 5, 4]], [[8, 7, 4, 3, 2, 6, 5, 6]], [[7, 4, 3, 2, 6, 5, 6]], [[0, 3, 2]], [[8, 1, 6, 2, 8, 6, 5, 4, 3, 2, 1]], [[1, 5, 5, 2, 3, 4, 5, 6, 7, 8]], [[8, 8, 6, 5, 4, 5, 1]], [[8, 8, 5, 4, 2, 2, 1, 8, 4, 5, 4]], [[4, 1, 2, 3, 4, 5, 6, 7, 8]], [[1, 2, 2, 3, 4, 5, 4, 5]], [[1, 2, 1, 5, 2, 6, 3, 8, 5, 4]], [[8, 8, 6, 5, 4, 2, 2, 1, 8, 4, 5, 4, 5]], [[1, 8, 6, 5, 4, 3, 2, 1]], [[1, 2, 2, 3, 5, 4, 5]], [[0, 2, 3, 4]], [[1, 2, 2, 3, 7, 4, 5, 2]], [[8, 6, 6, 5, 4, 3, 2, 8, 1, 4]], [[1, 8, 6, 5, 4, 2, 1]], [[8, 6, 8, 6, 5, 8, 4, 3, 2, 8, 1, 4]], [[1, 2, 2, 3, 4, 5, 5]], [[8, 8, 6, 5, 4, 3, 1]], [[0, 3]], [[2]], [[8, 7, 6, 5, 4, 3, 2, 6, 5, 2]], [[1, 0, 2, 4, 3]], [[1, 2, 3, 4, 5, 6, 7, 4, 8, 8, 1, 6]], [[5, 5, 5, 2, 3, 4, 5, 6, 8]], [[1, 8, 6, 5, 8, 3, 2, 1]], [[8, 7, 6, 5, 4, 3, 2, 1, 5, 1]], [[1, 2, 3, 4]], [[1, 2, 2, 2, 3, 3, 5, 4, 1]], [[8, 8, 6, 5, 4, 3, 2, 1, 4]], [[8, 7, 6, 5, 4, 3, 3, 1, 5]], [[8, 8, 6, 5, 4, 2, 2, 1, 8, 4, 5, 4, 6]], [[1, 2, 4, 3, 3, 3, 3, 7]], [[1, 2, 4, 3, 3, 3, 2, 3, 7]], [[5, 5, 5, 2, 3, 4, 6, 6, 8]], [[6, 3, 2, 4, 3]], [[8, 8, 5, 4, 2, 2, 1, 8, 4, 5, 4, 5]], [[8, 6, 8, 5, 4, 2, 1]], [[1, 2, 3, 3, 3, 3, 3, 1]], [[8, 8, 6, 5, 4, 3, 2, 1, 7]], [[1, 2, 2, 2, 3, 3, 5, 4, 1, 2]], [[0, 2, 2, 3, 4, 4, 5]], [[8, 8, 5, 4, 2, 2, 1, 8, 4, 5, 1, 5, 1]], [[5, 8, 7, 6, 4, 3, 2, 1, 5, 1]], [[1, 2, 2, 3, 5, 5]], [[5, 0, 2, 3, 0, 5, 6, 0, 8]], [[8, 4, 3, 2, 1, 6, 1]], [[8, 6, 5, 4, 2, 2, 1, 8, 4, 5, 4]], [[5, 8, 6, 4, 4, 2, 1, 5, 1, 6]], [[5, 4, 3, 2, 1]], [[1, 2, 1, 2, 2, 3, 3, 5, 1, 4]], [[8, 6, 5, 8, 3, 2, 1]], [[5, 0, 2, 3, 0, 5, 6, 0, 8, 0]], [[1, 1, 1, 2, 3, 4, 4]], [[5, 5, 5, 2, 3, 4, 6, 8]], [[0, 0, 2, 2, 4, 4, 4]], [[1, 1, 1, 2, 2, 2, 3, 3, 3]], [[1, 2, 2, 2, 2, 2, 2, 3]], [[1, 2, 2, 2, 3, 3, 3, 3, 3]], [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10]], [[1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2]], [[1, 1, 1, 1, 1, 1]], [[7, 3, 10, 8, 2]], [[2, 3, 4, 4, 4, 4, 4, 4, 5, 6]], [[1, 2, 3, 5, 4, 6, 7, 8, 9, 10, 11]], [[1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2]], [[1, 1, 4, 1, 1, 1, 1]], [[0, 0, 2, 4, 4, 4]], [[12, 1, 1, 3, 5, 4, 6, 7, 8, 9, 10, 11]], [[7, 3, 5, 10, 8, 2, 2]], [[1, 2, 2, 2, 2, 2, 1, 2, 3]], [[2, 3, 4, 4, 4, 4, 4, 4, 4, 5, 6]], [[1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 0, 2, 2, 2, 2]], [[1, 2, 3, 5, 4, 6, 7, 8, 9, 11]], [[1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2]], [[1, 1, 1, 1, 9, 1]], [[1, 2, 2, 2, 2, 2, 2, 1]], [[1, 2, 3, 5, 4, 6, 3, 7, 8, 9, 11]], [[1, 2, 3, 5, 4, 5, 6, 7, 8, 9, 10, 10]], [[1, 2, 2, 2, 2, 2, 1, 2, 3, 2, 2]], [[7, 7, 10, 8, 2, 2]], [[1, 1, 1, 2, 2, 2, 3, 3, 2]], [[2, 3, 4, 4, 4, 4, 4, 5, 5, 6]], [[7, 7, 10, 8, 2, 2, 11, 7]], [[1, 1, 2, 1, 8, 1, 1, 0, 9, 1, 2, 2, 2, 2, 2, 2]], [[1, 2, 2, 2, 3, 3, 3, 3, 3, 1]], [[1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2]], [[1, 2, 8, 3, 5, 4, 5, 6, 7, 8, 9, 10, 10]], [[1, 2, 3, 5, 4, 5, 10, 6, 10, 7, 8, 9, 10, 10]], [[1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]], [[1, 2, 8, 3, 5, 4, 5, 6, 7, 8, 9, 10, 10, 7]], [[1, 2, 2, 2, 2, 2, 1, 2, 3, 2]], [[2, 3, 4, 4, 4, 4, 4, 4, 8, 4, 5, 4]], [[7, 3, 8, 2]], [[1, 1, 1, 2, 2, 2, 3, 3, 1]], [[1, 2, 2, 2, 2, 11, 2, 2, 1, 2]], [[1, 2, 3, 5, 4, 5, 6, 7, 8, 9, 10, 10, 4]], [[1, 2, 2, 2, 2, 11, 10, 2, 1, 2, 2]], [[7, 3, 10, 0, 2]], [[1, 1, 4, 1, 1, 1, 1, 1]], [[1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 6, 2]], [[1, 12, 2, 3, 3, 3, 3, 3]], [[1, 1, 4, 1, 1, 1, 0]], [[1, 1, 2, 1, 2, 2, 2, 3, 3, 1]], [[2, 3, 8, 2]], [[7, 7, 10, 8, 2, 3, 11, 7]], [[1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]], [[2, 3, 7, 4, 4, 4, 4, 4, 4, 8, 4, 5, 4]], [[1, 2, 2, 3, 3, 3, 3, 3, 1]], [[1, 2, 2, 2, 11, 10, 2, 1, 2, 2, 2, 2]], [[12, 1, 3, 5, 4, 6, 7, 8, 9, 10, 11]], [[1, 2, 8, 4, 5, 4, 5, 6, 7, 8, 9, 10, 10]], [[1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 0, 2, 2, 2, 2, 0]], [[1, 2, 2, 2, 6, 2, 1, 3, 2, 2]], [[1, 1, 4, 1, 1, 1, 1, 5, 1]], [[0, 0, 2, 4, 4]], [[1, 2, 8, 4, 5, 4, 5, 6, 7, 8, 3, 10, 10, 5]], [[1, 1, 1, 2, 2, 3, 3, 1]], [[1, 2, 3, 5, 4, 6, 7, 8, 9, 11, 1]], [[1, 2, 3, 5, 4, 6, 7, 2, 8, 9, 10, 11]], [[2, 3, 4, 4, 4, 4, 4, 4, 1, 8, 4, 5, 4]], [[1, 2, 3, 5, 4, 6, 7, 2, 8, 9, 10, 10, 11]], [[1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1]], [[1, 1, 4, 1, 2, 1, 1]], [[1, 1, 4, 1, 1, 1]], [[1, 4, 1, 1, 1, 1, 1]], [[1, 1, 3, 5, 4, 6, 7, 2, 8, 9, 10, 11]], [[1, 1, 4, 2, 1, 1, 1]], [[0, 2, 4, 4]], [[2, 3, 4, 4, 4, 4, 4, 1, 8, 4, 5, 4, 4]], [[1, 2, 3, 5, 4, 6, 7, 8, 9, 7, 11, 1]], [[9, 1, 2, 2, 2, 3, 3, 3, 3, 12]], [[1, 1, 2, 1, 1, 1, 1, 1, 2, 0, 2, 2, 2, 2, 0]], [[1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 0, 2, 2, 2, 2, 0, 2]], [[1, 2, 3, 5, 4, 6, 7, 1, 8, 9, 10, 11, 8, 7]], [[1, 1, 1, 1, 1, 2, 2, 2, 11, 2, 2]], [[1, 1, 1, 1, 2, 2, 2, 3, 1]], [[1, 1, 2, 1, 2, 2, 2, 3, 3, 2]], [[1, 2, 12, 3, 5, 4, 5, 6, 7, 8, 9, 10, 10]], [[1, 6, 4, 4]], [[1, 2, 10, 5, 4, 6, 7, 3, 9, 11, 1]], [[9, 1, 2, 2, 2, 3, 3, 3, 3, 12, 12, 12]], [[2, 4, 4, 4, 4, 4, 4, 4, 5]], [[1, 1, 4, 1, 2, 2, 1, 1]], [[1, 2, 3, 5, 4, 6, 3, 7, 8, 9, 11, 2, 2]], [[1, 1, 1, 1, 2, 2, 2, 3, 3, 2]], [[1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 0, 2, 2, 2, 2, 0, 2, 1, 1]], [[5, 12, 2, 3, 4, 4, 4, 4, 4, 1, 8, 4, 5, 4, 4]], [[2, 3, 4, 3, 4, 4, 4, 4, 4, 5]], [[1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 0, 2, 2, 2, 2, 0, 2, 1, 1]], [[2, 7, 4, 4, 4, 4, 4, 4, 1, 8, 4, 5, 4, 1]], [[2, 3, 7, 4, 4, 4, 4, 4, 4, 8, 4, 5, 4, 4, 7]], [[1, 2, 5, 4, 6, 7, 1, 9, 3, 11, 8, 7]], [[1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 2, 0, 2, 2, 2, 2, 0, 2, 1, 1]], [[1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 2, 2, 2, 2]], [[1, 2, 4, 6, 7, 1, 7, 11, 8, 7]], [[3, 4, 4, 4, 4, 4, 8, 4, 5, 4]], [[1, 1, 1, 2, 2, 1, 3, 3, 3]], [[1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 0, 2, 2, 2, 2, 0, 2]], [[2, 3, 4, 4, 4, 4, 4, 1, 8, 4, 5, 4]], [[1, 1, 1, 1, 2, 2, 3, 3, 2]], [[1, 1, 1, 1, 9]], [[2, 2, 2, 2, 2, 2, 1, 2, 3, 2]], [[3, 4, 4, 4, 4, 8, 4, 5, 4]], [[1, 1, 2, 1, 2, 2, 2, 3, 1, 3, 1]], [[8, 1, 2, 10, 5, 4, 6, 7, 3, 9, 11, 1, 7]], [[2, 3, 7, 4, 4, 4, 4, 4, 4, 8, 4, 5, 4, 4, 7, 5]], [[2, 2, 2, 2, 2, 2, 1, 2, 4, 2]], [[1, 1, 2, 1, 2, 2, 2, 3, 1, 3, 1, 2]], [[1, 0, 1, 1, 2, 2, 2, 3, 3, 3]], [[1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 0, 2, 2, 2, 2, 2]], [[3, 2, 2, 2, 2, 2, 1, 2, 3, 2]], [[1, 1, 1, 2, 2, 2, 3, 1]], [[2, 2, 2, 11, 10, 2, 1, 2, 2, 2, 2]], [[1, 1, 1, 1, 1, 2, 2, 2, 11, 2, 2, 1]], [[1, 2, 4, 4, 5, 6, 7, 8, 3, 10, 10, 5]], [[2, 3, 2, 4, 4, 4, 4, 4, 4, 0, 5, 6]], [[2, 3, 4, 4, 4, 4, 4, 1, 8, 4, 5, 4, 3]], [[1, 1, 1, 1, 4]], [[7, 7, 10, 8, 10, 2, 11, 7, 7]], [[1, 1, 0, 4, 1, 1, 1]], [[1, 2, 4, 4, 5, 6, 7, 8, 3, 10, 10, 5, 4]], [[9, 2, 2, 2, 2, 3, 3, 3, 3, 12]], [[3, 1, 3, 4, 4]], [[1, 2, 3, 5, 4, 5, 6, 7, 8, 10, 10, 4]], [[1, 1, 1, 1, 1, 10, 1, 2, 2, 2, 2, 2, 2]], [[12, 1, 3, 5, 0, 6, 7, 8, 9, 10, 11]], [[4, 0, 0, 2, 4, 4, 4]], [[1, 1, 1, 1, 1, 10, 1, 2, 2, 2, 2, 2, 2, 1]], [[1, 2, 5, 6, 7, 1, 9, 3, 11, 8, 7]], [[1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 11, 2, 2, 6, 2]], [[1, 1, 0, 4, 1, 1, 0, 1]], [[2, 2, 2, 2, 2, 2, 1, 2]], [[1, 1, 4, 1, 2, 1, 1, 1]], [[1, 1, 11, 2, 1, 2, 2, 2, 3, 1, 3, 1]], [[1, 2, 2, 2, 2, 1, 1, 3]], [[1, 1, 1, 1, 8, 2, 2, 3, 3, 2]], [[1, 1, 8, 1, 1, 1, 1, 1]], [[1, 1, 2, 1, 1, 1, 1, 1, 3, 2, 0, 2, 2, 1, 2, 0, 2]], [[1, 1, 2, 1, 1, 1, 1, 1, 3, 2, 0, 2, 2, 1, 2, 0, 2, 2]], [[0, 0, 2, 4, 4, 2]], [[7, 7, 10, 8, 2, 2, 11, 7, 2]], [[1, 8, 4, 1, 1, 7, 1, 1, 1]], [[1, 1, 4, 1, 1, 2, 1, 1]], [[1, 1, 1, 2, 1, 7, 1, 1, 2, 2, 2, 11, 2, 2, 6, 2]], [[1, 2, 2, 2, 3, 3, 3, 9, 1]], [[2, 3, 7, 4, 4, 4, 4, 4, 4, 8, 2, 5, 4, 7]], [[1, 1, 1, 2, 2, 2, 3, 3, 2, 2]], [[2, 3, 4, 4, 4, 4, 4, 4, 1, 8, 4, 5, 4, 4]], [[1, 1, 1, 2, 2, 2, 3, 3, 3, 2, 2]], [[2, 2, 2, 1, 2, 2, 1, 2, 3, 2, 2]], [[11, 1, 1, 4, 1, 1, 0, 1, 0]], [[7, 7, 8, 2, 2, 11, 7]], [[1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 0, 2, 2, 2, 2, 0, 2, 1, 1]], [[1, 2, 2, 3, 2, 6, 2, 1, 3, 2, 2]], [[3, 4, 4, 4, 4, 4, 8, 5, 10]], [[1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 5]], [[9, 1, 2, 3, 4, 6, 7, 8, 9, 11]], [[1, 1, 2, 1, 1, 1, 1, 1, 2, 0, 2, 2, 2, 2, 0, 1]], [[7, 7, 10, 8, 2, 1]], [[6, 1, 2, 3, 5, 4, 6, 7, 1, 8, 9, 2, 10, 10, 11, 5]], [[1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2]], [[2, 3, 4, 4, 4, 4, 4, 4, 8, 4, 6, 4]], [[1, 2, 2, 3, 3, 3, 3, 3]], [[2, 2, 3, 2, 2, 1, 2]], [[1, 6, 4, 4, 1]], [[2, 3, 2, 4, 4, 4, 4, 4, 0, 5, 6]], [[1, 2, 2, 3, 3, 3, 3, 1]], [[3, 1, 3, 4, 4, 3]], [[1, 2, 2, 2, 11, 10, 2, 1, 2, 2, 2, 2, 2]], [[7, 7, 10, 8, 2, 3, 9, 7]], [[1, 2, 3, 5, 4, 6, 9, 7, 8, 9, 11, 1]], [[1, 1, 2, 2, 2, 3, 3, 2, 2, 2]], [[3, 1, 3, 7, 5]], [[1, 8, 4, 1, 1, 6, 1, 1, 1]], [[1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 0, 2, 2, 2, 2, 8, 2]], [[1, 2, 8, 4, 5, 4, 5, 8, 9, 10, 10]], [[7, 7, 10, 8, 2, 2, 11, 4, 7, 7]], [[1, 1, 2, 6, 1, 3, 1, 1, 1, 1, 1, 2, 0, 2, 2, 2, 2, 0, 2, 1, 1]], [[2, 2, 2, 1, 2, 1, 2, 3, 2, 2]], [[5, 6, 4, 4, 1]], [[1, 2, 2, 3, 3, 3, 5, 3, 1]], [[1, 2, 5, 4, 6, 7, 1, 8, 9, 10, 11, 8, 7]], [[5, 6, 5, 0, 4, 4, 1]], [[1, 1, 1, 9]], [[1, 2, 3, 5, 6, 7, 8, 9, 7, 7, 11, 1]], [[1, 8, 4, 1, 0, 7, 1, 1]], [[1, 2, 1, 2, 2, 2, 3, 3, 1]], [[5, 6, 4, 4, 1, 1, 1]], [[0, 0, 3, 2, 4, 4, 2]], [[1, 1, 11, 4, 1, 1, 1, 1]], [[1, 2, 13, 3, 5, 4, 5, 6, 7, 8, 9, 10, 10, 9]], [[1, 12, 2, 3, 3, 2, 3, 3]], [[1, 1, 4, 1, 1, 1, 1, 1, 1]], [[1, 9]], [[1, 2, 8, 5, 5, 4, 5, 6, 7, 8, 3, 10, 10, 5]], [[2, 3, 4, 4, 4, 4, 4, 2, 1, 8, 0, 4, 5, 4, 4]], [[1, 1, 4, 1, 13, 1, 1, 0]], [[3, 3, 4, 4, 4, 4, 8, 4, 5, 4, 4, 8]], [[1, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 0, 2, 2, 2, 2, 0, 2, 2]], [[1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 0, 2, 2, 2, 2, 1]], [[1, 1, 2, 1, 1, 2, 2, 3, 9, 8, 3, 1]], [[2, 3, 7, 4, 4, 4, 4, 4, 8, 4, 5, 4, 7, 5]], [[2, 1, 6, 1, 1, 1, 1]], [[2, 3, 4, 4, 4, 4, 4, 2, 1, 8, 0, 4, 9, 5, 4, 4]], [[1, 2, 2, 2, 2, 2, 2, 2, 3]], [[1, 13, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 2, 2, 2, 2, 2]], [[1, 2, 3, 2, 5, 6, 7, 8, 10, 4]], [[1, 7, 4, 0, 1, 1, 1, 4]], [[1, 1, 2, 2, 2, 3, 3, 2, 2, 2, 2]], [[1, 1, 0, 4, 1, 1]], [[2, 2, 2, 2, 2, 1, 2, 4, 2]], [[3, 1, 3, 11, 4, 4, 3]], [[8, 1, 2, 10, 5, 4, 6, 9, 3, 11, 1, 7]], [[1, 3, 2, 2, 2, 1, 3]], [[5, 1, 1, 1, 1, 1, 1]], [[1, 2, 2, 2, 2, 2, 2, 2, 3, 1]], [[1, 2, 2, 2, 3, 3, 3, 3, 3, 1, 3]], [[7, 7, 10, 8, 2, 2, 7]], [[2, 3, 4, 4, 4, 4, 4, 4, 4, 3, 5, 6]], [[1, 2, 3, 5, 6, 7, 4, 8, 9, 7, 7, 11, 1, 5, 7, 7]], [[5, 6, 3, 4, 1]], [[8, 1, 2, 10, 5, 4, 6, 9, 9, 3, 11, 1, 7]], [[2, 8, 7, 4, 4, 4, 4, 4, 4, 1, 8, 4, 5, 4, 1, 5, 4]], [[1, 2, 3, 2, 5, 6, 7, 8, 10, 4, 2, 3]], [[1, 2, 2, 3, 3, 3, 3, 3, 3]], [[1, 1, 1, 5, 1, 2, 2, 2, 11, 2, 2, 1]], [[1, 3, 3, 4, 5, 6, 7, 8, 10, 10]], [[1, 7, 0, 1, 1, 1, 4]], [[1, 2, 4, 7, 4, 5, 6, 7, 8, 3, 10, 10, 5]], [[5, 2, 3, 4, 4, 4, 4, 4, 4, 8, 4, 6, 4]], [[2, 3, 4, 6, 4, 4, 4, 4, 1, 8, 4, 5, 4]], [[1, 2, 11, 3, 5, 4, 6, 7, 8, 9, 2]], [[1, 2, 2, 2, 3, 3, 3, 3, 3, 1, 3, 3]], [[9, 1, 2, 2, 2, 3, 3, 3, 3, 12, 9, 12, 12, 12]], [[1, 2, 3, 5, 4, 6, 7, 8, 11, 1]], [[5, 10, 1, 1, 1, 1, 1, 1]], [[1, 1, 1, 2, 3, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]], [[1, 2, 3, 5, 4, 5, 6, 7, 8, 9, 10, 10, 4, 9]], [[1, 2, 11, 2, 2, 2, 2, 1, 2, 3]], [[1, 2, 3, 5, 4, 5, 10, 6, 10, 7, 8, 9, 2, 10, 10]], [[1, 1, 1, 10, 2, 5, 1, 3, 3, 3]], [[2, 3, 4, 4, 4, 4, 4, 2, 1, 4, 8, 0, 4, 9, 5, 4, 4]], [[7, 6, 7, 2, 10, 8, 2, 2]], [[3, 1, 7, 5]], [[1, 1, 1, 0, 2, 2, 2, 3, 3, 2]], [[1, 1, 1, 2, 2, 1, 3, 3, 3, 2]], [[1, 2, 8, 5, 5, 4, 5, 6, 7, 8, 3, 10, 5, 5]], [[1, 6, 1, 1, 1, 1]], [[3, 0, 3, 7, 5, 3, 0]], [[1, 6, 4]], [[8, 1, 2, 13, 5, 4, 6, 7, 9, 11, 7, 4]], [[2, 3, 4, 4, 4, 4, 4, 1, 8, 4, 5, 4, 4, 4]], [[9, 1, 2, 2, 2, 3, 3, 3, 3, 12, 9, 2, 12, 12, 12]], [[1, 2, 3, 5, 4, 5, 6, 8, 10, 10, 4, 8]], [[3, 3, 4, 4, 4, 4, 8, 4, 5, 4, 3, 4, 8]], [[1, 2, 3, 5, 4, 6, 7, 8, 11, 1, 3]], [[2, 3, 4, 4, 4, 4, 4, 4, 8, 4, 6, 4, 4]], [[1, 1, 4, 10, 1, 2, 1, 1]], [[1, 1, 4, 1, 1, 2, 1, 1, 2]], [[9, 1, 2, 2, 2, 3, 3, 3, 3, 12, 9, 12, 12, 1, 12]], [[1, 1, 2, 2, 3, 3, 3, 3, 3, 1, 3]], [[1, 4, 4]], [[1, 2, 4, 4, 5, 6, 8, 8, 3, 10, 10, 5]], [[9, 1, 2, 2, 2, 3, 3, 3, 3, 12, 9, 12, 12, 1, 12, 3]], [[1, 1, 2, 1, 8, 1, 1, 0, 9, 1, 2, 2, 2, 2, 2, 2, 2]], [[1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 2, 2, 2, 2, 2]], [[2, 4, 4, 4, 4, 4, 4, 1, 8, 4, 5, 4, 1, 4]], [[0, 0, 2, 4, 4, 4, 4]], [[1, 1, 1, 5, 1, 0, 2, 2, 2, 11, 2, 2, 1]], [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9]], [[1, 7, 7, 10, 8, 2, 3, 11, 7]], [[1, 2, 8, 3, 5, 4, 5, 6, 8, 9, 10, 10, 7, 9]], [[1, 2, 3, 5, 6, 7, 8, 9, 7, 7, 11, 1, 2]], [[7, 7, 2, 10, 8, 2, 2]], [[1, 2, 3, 3, 5, 6, 7, 8, 9, 7, 7, 11, 1, 1]], [[2, 2, 2, 2, 2, 11, 2, 2, 1, 2]], [[1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 0, 2, 2, 2, 2, 0, 2, 1, 1]], [[1, 1, 1, 2, 2, 13, 3, 3, 1]], [[1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 11, 2, 2, 6, 2]], [[1, 2, 3, 5, 4, 4, 6, 7, 8, 11]], [[1, 8, 4, 1, 1, 7, 1, 1, 1, 1]], [[1, 1, 1, 3, 2, 2, 3, 1, 2]], [[9, 1, 2, 2, 2, 3, 3, 3, 3, 12, 9, 12, 12, 12, 12]], [[1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 6, 2, 2]], [[1, 2, 3, 5, 4, 5, 6, 7, 8, 10, 10, 10]], [[1, 3, 1, 2, 2, 2, 3, 3, 2, 2, 2, 3]], [[1, 1, 4, 1, 1, 2, 1, 1, 13, 2, 1]], [[1, 2, 3, 2, 3, 3, 3, 3, 3, 1, 3]], [[1, 1, 1, 1, 1, 10, 1, 2, 2, 2, 2, 2, 1]], [[1, 1, 2, 1, 1, 1, 1, 1, 3, 2, 0, 2, 2, 1, 0, 2, 2]], [[1, 2, 11, 3, 5, 4, 6, 7, 9, 2]], [[1, 2, 3, 5, 4, 6, 7, 11, 1]], [[1, 2, 8, 5, 5, 4, 5, 3, 7, 3, 10, 10, 5]], [[1, 2, 3, 5, 4, 6, 4, 7, 8, 8, 9, 10, 11]], [[1, 1, 8, 1, 1, 1, 1, 1, 1]], [[9, 2, 2, 2, 2, 3, 3, 3, 3]], [[1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1]], [[1, 2, 2, 1, 1, 1, 1, 2, 1, 2, 2, 0, 2, 2, 2, 2, 0, 2]], [[2, 2, 2, 2, 2, 1, 2]], [[1, 13, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 2, 2, 2, 2]], [[1, 2, 2, 2, 2, 2, 1, 2, 3, 2, 2, 2, 1, 1, 2]], [[1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 0, 2, 2, 2, 2, 0, 2, 1, 2, 1]], [[1, 1, 9]], [[2, 2, 4, 4, 4, 4, 4, 4, 4, 3, 5, 6]], [[3, 4, 4, 4, 4, 4, 1, 8, 4, 5, 4, 4, 4]], [[1, 2, 4, 4, 5, 12, 6, 7, 8, 3, 10, 10, 5, 4, 4, 8]], [[1, 2, 5, 4, 6, 7, 2, 1, 9, 3, 11, 8, 7]], [[1, 12, 2, 3, 3, 2, 3, 3, 9]], [[1, 2, 3, 5, 6, 7, 8, 9, 7, 11, 1, 2]], [[2, 2, 2, 3, 11, 10, 2, 1, 8, 7, 2, 2, 2, 2]], [[1, 1, 1, 10, 2, 5, 1, 3, 3, 3, 1]], [[1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2]], [[1, 1, 12, 4, 1, 2, 1, 1]], [[1, 2, 3, 5, 6, 7, 8, 5, 9, 7, 11, 1, 2]], [[9, 1, 2, 2, 2, 3, 3, 3, 3, 12, 2]], [[1, 2, 12, 3, 5, 4, 5, 6, 7, 8, 9, 10, 10, 10, 4]], [[1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 2, 1, 2, 3, 2]], [[1, 11, 5, 2, 2, 2, 1, 2, 3]], [[1, 4, 2, 1, 2, 2, 2, 2, 3, 1, 3, 1]], [[1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 11, 2, 2, 6, 2]], [[7, 10, 8, 2, 3, 9, 7]], [[1, 2, 8, 1, 1, 1]], [[0, 0, 2, 4, 4, 4, 0]], [[1, 1, 2, 1, 2, 2, 2, 2, 3, 3, 1]], [[1, 2, 2, 3, 3, 3, 3, 3, 3, 3]], [[1, 2, 2, 2, 6, 2, 4, 1, 3, 2, 2]], [[1, 1, 0, 13, 4, 1, 1, 1]], [[1, 1, 2, 12, 1, 1, 1, 4, 1, 1, 2, 2, 2, 1, 2, 3, 2]], [[0, 0, 0, 2, 4, 4, 4]], [[2, 4, 4, 4, 8, 4, 4, 1, 4, 5, 4, 1, 4]], [[1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 6, 2, 1]], [[7, 7, 2, 10, 8, 2, 2, 2]], [[7, 10, 9, 2, 3, 9, 7]], [[1, 1, 2, 9]], [[1, 1, 1, 9, 1]], [[1, 1, 2, 1, 1, 1, 1, 1, 3, 2, 0, 2, 2, 1, 0, 2]], [[1, 2, 5, 3, 5, 4, 5, 6, 7, 8, 9, 10, 10, 4, 9, 4]], [[12, 1, 3, 5, 0, 6, 7, 8, 9, 11]], [[1, 1, 11, 1, 9, 1]], [[1, 1, 2, 1, 3, 1, 1, 1, 1, 2, 0, 2, 2, 2, 2, 0, 2, 1, 1]], [[1, 7, 5]], [[1, 2, 4, 5, 10, 7, 1, 7, 10, 8, 7]], [[1, 1, 2, 1, 1, 1, 1, 1, 3, 0, 0, 2, 2, 1, 0, 2, 2]], [[1, 4, 1, 2, 2, 1, 1, 1]], [[1, 1, 1, 1, 1, 2, 2, 2, 3, 1]], [[0, 2, 2, 3, 11, 3, 3, 3, 1]], [[1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2]], [[1, 1, 1, 2, 3, 2, 2, 3, 1, 2, 2]], [[12, 1, 3, 5, 6, 7, 8, 9, 10, 11, 9]], [[1, 2, 13, 3, 9, 5, 4, 5, 6, 7, 8, 9, 10, 10, 9]], [[1, 1, 1, 2, 3, 2, 2, 3, 1, 5, 2]], [[1, 1, 2, 2, 3, 3, 3, 3, 1, 3]], [[11, 2, 3, 5, 4, 6, 7, 8, 9, 10, 10, 4, 9]], [[1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2]], [[2, 2, 2, 1, 2, 2, 3, 2, 2]], [[9, 1, 4, 2, 2, 2, 3, 3, 3, 3, 12, 9, 12, 12, 12, 3]], [[2, 3, 4, 8, 4, 4, 4, 4, 4, 1, 8, 4, 0, 5, 4]], [[2, 3, 4, 4, 4, 4, 2, 1, 8, 0, 4, 5, 4, 4]], [[12, 1, 7, 3, 5, 4, 0, 6, 7, 8, 9, 10, 11]], [[7, 13, 7, 10, 8, 2, 2, 11, 7]], [[8, 4, 4, 4, 4, 4, 8, 4, 5, 4]], [[2, 4, 4, 5, 4, 4, 4, 4, 4, 5]], [[1, 2, 3, 5, 4, 4, 6, 7, 1, 8, 9, 10, 11, 8, 7]], [[1, 1, 1, 2, 2, 12, 3, 1]], [[1, 1, 1, 5, 1, 1, 10, 1, 2, 2, 2, 2, 2, 1, 2]], [[1, 2, 3, 5, 4, 6, 4, 7, 8, 8, 9, 10, 11, 8]], [[1, 13, 1, 1, 2, 1, 1, 4, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2]], [[1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1]], [[1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2]], [[1, 2, 3, 5, 4, 6, 7, 2, 1, 8, 9, 10, 10, 11]], [[1, 1, 1, 1, 2, 2, 2, 3, 1, 2, 5, 1]], [[7, 7, 10, 8, 1, 2, 11, 7, 2, 7]], [[1, 2, 4, 4, 5, 5, 12, 6, 10, 6, 8, 3, 10, 10, 5, 4, 4, 8]], [[7, 3, 5, 10, 13, 2, 2]], [[1, 8]], [[0, 9, 2, 4, 4]], [[1, 2, 8, 5, 5, 4, 5, 6, 7, 8, 3, 10, 10, 5, 7]], [[5, 12, 2, 3, 4, 4, 4, 4, 4, 4, 1, 8, 4, 5, 4, 4]], [[1, 1, 1, 2, 3, 2, 0, 2, 3, 1, 2, 2]], [[2, 3, 4, 4, 4, 4, 4, 1, 8, 4, 5, 4, 4, 4, 4]], [[3, 1, 2, 9]], [[1, 1, 1, 2, 1, 12, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2]], [[1, 0, 7, 1, 10, 2, 5, 1, 3, 3, 3, 1]], [[1, 2, 2, 2, 2, 2, 1, 2, 3, 2, 2, 2, 1, 1, 2, 2]], [[0, 2, 4]], [[2, 1, 0, 1, 1]], [[2, 3, 7, 4, 4, 4, 4, 4, 4, 8, 2, 5, 4, 7, 3]], [[2, 4, 4, 4, 4, 4, 4, 5]], [[3, 0, 9, 7, 5, 3, 0]], [[7, 3, 10, 0, 1, 2, 10, 10]], [[9, 1, 2, 2, 2, 3, 3, 3, 3, 3, 12, 9, 12, 12, 12]], [[2, 3, 4, 8, 4, 4, 4, 4, 4, 1, 8, 4, 0, 5, 5, 4]], [[0, 1, 4, 4]], [[3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 0, 2, 2, 2, 2, 0, 2, 1, 1]], [[3, 4, 13, 4, 4, 4, 8, 4, 5, 4, 8]], [[7, 7, 10, 2, 1]], [[2, 4, 3, 4, 4, 4, 4, 4, 4, 8, 4, 4]], [[1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 0, 2, 2, 2, 2, 8, 2, 2, 1]], [[1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 0, 2, 2, 2, 2, 0, 2, 1, 1, 2]], [[1, 2, 3, 3, 3, 5, 3, 1, 3]], [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 8, 8]], [[1, 1, 1, 1, 8, 2, 2, 3, 3]], [[1, 1, 1, 2, 3, 2, 2, 3, 2, 2]], [[1, 1, 2, 2, 6, 1, 3, 1, 1, 1, 1, 1, 2, 0, 2, 2, 2, 2, 0, 2, 1, 1]], [[2, 3, 7, 4, 4, 4, 4, 4, 8, 2, 5, 4, 7, 4]], [[1, 1, 1, 2, 2, 10, 3, 3, 3]], [[2, 3, 4, 4, 4, 4, 4, 4, 8, 4, 6]], [[13, 0, 7, 1, 10, 2, 5, 1, 3, 3, 3, 1]], [[1, 1, 12, 1, 1, 1, 4, 1, 1, 2, 2, 2, 1, 2, 3, 2]], [[1, 1, 2, 1, 3, 1, 4, 1, 1, 2, 2, 2, 1, 2, 3, 2]], [[2, 2, 2, 2, 2, 11, 2, 1, 9, 1, 2]], [[7, 7, 10, 8, 9, 2, 3, 11, 7]], [[1, 1, 2, 1, 1, 1, 1, 2, 0, 2, 2, 2, 2, 0]], [[2, 0, 0, 2, 13, 4, 4, 4]], [[1, 2, 3, 5, 4, 6, 1, 2, 8, 9, 10, 10, 11, 1]], [[1, 3, 9]], [[2, 8, 7, 4, 4, 4, 4, 4, 4, 1, 8, 0, 5, 4, 1, 5, 4]], [[1, 1, 2, 12, 1, 1, 1, 4, 1, 1, 2, 2, 2, 1, 2, 3, 2, 2]], [[2, 3, 4, 4, 4, 4, 4, 5, 5, 2, 4, 6]], [[1, 2, 4, 4, 5, 5, 12, 6, 10, 4, 6, 8, 3, 10, 10, 5, 4, 4, 8]], [[1, 1, 4, 1, 1]], [[2, 2, 0, 0, 2, 13, 4, 4, 4]], [[1, 1, 4, 5, 1, 1, 1, 1, 1, 1, 5]], [[2, 2, 2, 2, 2, 2, 1, 2, 3, 2, 3]], [[9, 1, 2, 2, 2, 3, 0, 4, 3, 3, 3, 12, 2, 3]], [[2, 3, 4, 8, 4, 4, 4, 4, 1, 8, 4, 0, 5, 5, 4, 4]], [[5, 12, 2, 3, 4, 4, 4, 4, 4, 4, 1, 5, 8, 4, 5, 4, 4]], [[1, 4, 1, 1, 1, 1, 5, 1]], [[1, 2, 1, 2, 2, 2, 3, 3, 1, 3]], [[1, 1, 2, 1, 2, 1, 4, 1, 1, 2, 2, 2, 1, 2, 10, 2]], [[2, 2, 2, 2, 2, 11, 11, 2, 1, 9, 1, 2]], [[12, 1, 3, 5, 6, 7, 8, 9, 10, 11, 9, 1]], [[1, 1, 11, 4, 1, 1, 1, 1, 1]], [[1, 2, 3, 11, 4, 6, 4, 7, 8, 8, 9, 10, 11, 11]], [[12, 1, 3, 5, 6, 7, 8, 9, 10, 11, 9, 12]], [[2, 3, 7, 4, 4, 4, 4, 4, 4, 8, 5, 4, 4, 7]], [[1, 1, 1, 1, 5, 1, 2, 2, 2, 2, 2, 2]], [[1, 1, 1, 0, 1, 1]], [[7, 4, 3, 5, 10, 8, 2, 2]], [[1, 2, 8, 3, 5, 4, 5, 6, 7, 8, 12, 9, 10, 10]], [[1, 2, 2, 6, 2, 1, 3, 2, 2]], [[1, 1, 4, 5, 1, 1, 1, 1, 1, 1, 5, 5]], [[1, 0, 2, 1, 1, 1, 1, 1, 2, 2, 0, 2, 2, 2, 2, 8, 2]], [[1, 13, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 2, 2, 0, 2, 2, 2]], [[11, 2, 3, 4, 8, 4, 4, 4, 4, 4, 1, 8, 4, 0, 5, 5, 4]], [[1, 3, 1, 2, 2, 2, 3, 3, 2, 2, 2, 3, 2]], [[1, 2, 13, 3, 5, 4, 5, 6, 6, 8, 9, 10, 3, 10, 9, 1]], [[1, 2, 2, 2, 3, 3, 3, 9, 1, 2]], [[9, 1, 11, 4, 1, 1, 1, 1]], [[1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2]], [[1, 2, 3, 5, 4, 6, 7, 1, 8, 9, 10, 11, 8, 7, 6]], [[3, 1, 1, 1, 1, 3, 1, 1, 1, 2, 0, 2, 2, 2, 9, 0, 2, 1, 1, 1]], [[2, 3, 4, 4, 4, 4, 4, 4, 4, 5, 6, 3]], [[1, 2, 11, 3, 5, 10, 4, 6, 7, 8, 9, 2]], [[1, 8, 2, 8, 3, 5, 4, 5, 6, 7, 8, 9, 10, 10]], [[1, 2, 3, 5, 6, 7, 8, 9, 2, 11, 1, 2]], [[12, 1, 3, 6, 7, 8, 11, 11, 9, 1]], [[1, 2, 8, 5, 5, 4, 9, 5, 3, 7, 10, 10, 5]], [[1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1]], [[1, 2, 3, 5, 4, 6, 7, 11, 1, 2]], [[1, 1, 10, 1, 1, 2, 1, 1]], [[1, 2, 3, 5, 4, 6, 4, 7, 8, 8, 9, 10, 11, 8, 7]], [[12, 6, 1, 3, 5, 0, 6, 7, 8, 9, 11]], [[1, 2, 3, 5, 3, 3, 4, 5, 10, 6, 10, 7, 8, 9, 2, 10, 10]], [[3, 3, 0, 3, 7, 5, 3, 0]], [[2, 2, 2, 2, 1, 2, 2]], [[4, 9, 1, 2, 2, 2, 3, 3, 3, 3, 12, 9, 2, 12, 12]], [[1, 1, 2, 1, 1, 1, 1, 1, 12, 0, 2, 2, 2, 8, 0, 1, 0]], [[3, 4, 3, 0, 0, 2, 4, 4, 4, 4]], [[1, 1, 1, 5, 2, 5, 1, 3, 3, 3, 2]], [[2, 3, 7, 4, 4, 4, 4, 8, 2, 5, 4, 7, 4, 4, 7]], [[1, 2, 3, 5, 6, 4, 6, 7, 2, 8, 9, 10, 11]], [[1, 1, 2, 2, 6, 1, 3, 1, 1, 1, 1, 1, 2, 0, 2, 2, 2, 2, 2, 1, 1]], [[1, 2, 3, 5, 4, 6, 7, 8, 9, 10, 9, 11]], [[1, 2, 3, 5, 4, 6, 7, 8, 11, 11, 1, 3]], [[1, 1, 1, 2, 2, 2, 3, 3]], [[8, 4, 4, 4, 4, 4, 8, 4, 5, 4, 4]], [[1, 1, 1, 1, 1, 2, 2, 11, 2, 2]], [[7, 10, 9, 3, 9, 7]], [[9, 1, 2, 2, 2, 2, 3, 0, 4, 3, 3, 3, 12, 2, 3]], [[1, 2, 3, 5, 4, 6, 7, 2, 9, 8, 9, 10, 10, 11]], [[1, 2, 4, 2, 2, 2, 1, 2, 3]], [[1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 0, 2, 2, 2]], [[1, 2, 4, 4, 6, 12, 6, 7, 8, 3, 10, 10, 5, 4, 4, 8]], [[1, 1, 2, 1, 1, 1, 1, 3, 2, 0, 2, 2, 1, 2, 0, 2, 2]], [[2, 2, 2, 1, 2, 2]], [[1, 2, 11, 3, 5, 1, 10, 4, 6, 7, 8, 9, 2]], [[7, 7, 2, 10, 8, 8, 2, 2, 2]], [[1, 2, 1, 2, 2, 2, 3, 3, 0, 1, 3]], [[1, 12, 2, 3, 3, 3, 11, 3, 3]], [[1, 2, 13, 3, 5, 4, 5, 6, 7, 8, 9, 10, 1, 10, 9, 8]], [[3, 7, 7, 10, 8, 9, 3, 11, 7, 7]], [[1, 13, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 2, 2, 0, 2, 2, 2, 2]], [[1, 2, 11, 3, 5, 10, 4, 6, 7, 8, 2]], [[2, 3, 4, 13, 4, 4, 4, 4, 11, 1, 8, 4, 5, 4, 8]], [[1, 2, 3, 5, 4, 6, 7, 1, 9, 10, 11, 3, 8, 7, 6, 4]], [[1, 3, 1, 2, 2, 1, 3, 3, 2, 3]], [[9, 1, 2, 4, 2, 2, 3, 3, 3, 3, 12]], [[6, 1, 2, 3, 5, 4, 6, 7, 1, 8, 9, 2, 10, 10, 11, 5, 4]], [[13, 13, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 2, 2, 0, 2, 2, 2]], [[1, 2, 2, 1, 1, 1, 1, 2, 1, 2, 2, 0, 2, 2, 2, 2, 0, 1, 2]], [[7, 7, 10, 8, 2, 2, 6, 11, 2]], [[2, 2, 2, 3, 2, 1, 2]], [[1, 1, 1, 1]], [[1, 2, 3, 4, 5, 5, 5]], [[5, 5, 5, 1, 2, 3]], [[5, 5, 1, 5, 2, 5, 3, 5, 4]], [[1, 1]], [[2, 4, 6, 8, 10, 12]], [[1, 1, 1, 1, 1]], [[1, 2, 3, 1, 2]], [[1, 2, 3, 4, 5, 6, 7, 1]], [[1, 2, 3, 4, 4, 5, 6, 6, 6]], [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 8]], [[1, 2, 3, 5, 4, 6, 7, 6, 6, 9, 10, 11, 10, 10]], [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 8, 6]], [[1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 10]], [[0, 0, 2, 2, 4, 4, 11, 4]], [[1, 2, 4, 2, 2, 3, 3, 3, 3, 3, 3]], [[7, 3, 10, 8]], [[1, 2, 3, 4, 5, 6, 7, 9, 10, 10, 10]], [[1, 2, 3, 4, 10, 6, 7, 8, 8, 10, 10, 8, 6]], [[1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10, 10, 8]], [[1, 2, 3, 5, 5, 7, 8, 9, 10, 10]], [[1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 10, 10]], [[1, 2, 3, 5, 6, 7, 8, 9, 1, 10, 3]], [[1, 11, 2, 3, 4, 10, 6, 7, 8, 8, 10, 10, 7, 6]], [[1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10, 10, 8, 8]], [[4, 0, 0, 2, 2, 4, 4, 11, 4, 4]], [[1, 2, 3, 4, 2, 9, 5, 6, 7, 9, 10, 10, 8, 6]], [[1, 2, 3, 5, 7, 8, 9, 1, 10, 3, 1]], [[0, 0, 2, 2, 4, 4, 4, 0, 4]], [[7, 1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 10]], [[1, 12, 2, 3, 4, 10, 6, 7, 8, 8, 10, 10, 7, 6, 4]], [[0, 0, 2, 2, 11, 4]], [[1, 2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 8, 6]], [[2, 3, 4, 4, 4, 4, 4, 4, 5, 6, 5, 4]], [[1, 2, 3, 4, 6, 2, 7, 8, 9, 1, 10, 10]], [[1, 2, 3, 5, 4, 6, 7, 8, 9, 10, 2, 11]], [[2, 3, 4, 4, 4, 4, 4, 4, 5, 6, 5]], [[1, 12, 2, 3, 4, 2, 10, 6, 7, 8, 8, 10, 10, 7, 6, 4]], [[1, 2, 3, 4, 5, 5, 6, 6, 8, 9, 1, 10, 10]], [[1, 2, 4, 2, 2, 3, 3, 3, 3, 3, 3, 1, 4]], [[0, 0, 2, 2, 11]], [[1, 2, 3, 6, 2, 7, 8, 9, 1, 10, 10]], [[2, 3, 4, 4, 6, 4, 4, 4, 4, 5, 6, 5]], [[1, 2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 8]], [[1, 2, 3, 6, 6, 7, 8, 9, 10, 10, 8, 6]], [[1, 2, 2, 3, 4, 5, 6, 2, 8, 9, 10, 10, 8, 6, 4]], [[1, 2, 4, 5, 6, 7, 7, 8, 9, 9, 10, 8]], [[1, 2, 3, 5, 4, 6, 7, 6, 6, 9, 10, 11, 10, 10, 5]], [[2, 3, 4, 4, 5, 4, 4, 4, 5, 6]], [[2, 3, 4, 4, 5, 4, 4, 4, 5, 6, 5]], [[0, 0, 2, 2, 4, 4, 0, 4]], [[1, 2, 3, 6, 6, 12, 8, 9, 10, 10, 8, 6]], [[2, 3, 4, 4, 5, 4, 4, 4, 4, 5, 6, 5]], [[0, 0, 2, 2, 0, 4, 5, 4, 4, 0]], [[0, 0, 2, 2, 11, 4, 4]], [[1, 2, 4, 5, 6, 7, 8, 11, 1, 10, 10]], [[7, 3, 10, 10, 8]], [[1, 5, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10, 10]], [[7, 0, 2, 3, 4, 5, 6, 7, 8, 9, 2, 10]], [[0, 0, 2, 2, 4, 4, 0, 4, 2]], [[1, 1, 1, 0, 1, 1, 2, 2, 2, 2, 2]], [[1, 2, 3, 4, 5, 6, 7, 7, 8, 4, 9, 10, 10, 8]], [[1, 2, 7, 3, 4, 5, 6, 7, 8, 9, 1, 10]], [[1, 12, 2, 3, 4, 10, 6, 7, 8, 8, 10, 10, 7, 6, 4, 7]], [[1, 2, 3, 6, 6, 12, 8, 4, 10, 10, 8, 6]], [[6, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10]], [[1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 10, 10, 1, 4]], [[1, 12, 2, 3, 4, 2, 10, 6, 7, 6, 8, 8, 10, 10, 7, 6, 4, 6]], [[1, 2, 3, 4, 6, 2, 7, 8, 9, 1, 10]], [[1, 2, 9, 3, 5, 6, 7, 7, 8, 9, 10, 10, 8]], [[1, 2, 2, 3, 4, 5, 6, 2, 8, 9, 10, 10, 8, 6, 4, 9]], [[2, 3, 4, 4, 5, 4, 4, 4, 5, 6, 9, 4]], [[1, 2, 3, 5, 10, 4, 6, 7, 8, 9, 10, 11, 9]], [[1, 2, 3, 6, 6, 7, 8, 9, 10, 9, 10, 8, 6]], [[0, 0, 2, 11]], [[0, 2, 2, 0, 4, 5, 4, 4, 0]], [[1, 3, 4, 5, 6, 7, 8, 9, 1, 10]], [[1, 2, 3, 4, 2, 9, 5, 6, 7, 9, 10, 10, 8, 6, 8]], [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 8, 6, 10]], [[1, 12, 2, 4, 2, 10, 6, 7, 8, 8, 10, 10, 7, 6, 4]], [[0, 1, 2, 0, 4, 5, 4, 4, 0, 2]], [[1, 1, 1, 0, 1, 1, 2, 2, 2, 2, 2, 2]], [[0, 0, 2, 11, 2, 11, 4, 0]], [[1, 0, 2, 3, 6, 6, 8, 4, 10, 10, 8, 6, 1]], [[7, 0, 2, 3, 4, 5, 6, 7, 8, 9, 2, 10, 3]], [[4, 7, 10, 8]], [[0, 0, 2]], [[1, 2, 6, 3, 5, 5, 7, 9, 5, 10, 10]], [[7, 10, 8, 2]], [[1, 3, 2, 6, 3, 3, 3, 3]], [[1, 12, 2, 3, 4, 6, 7, 8, 8, 10, 10, 7, 6, 4]], [[1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 10, 1, 4]], [[1, 2, 3, 5, 4, 6, 7, 2, 6, 6, 9, 10, 11, 10, 10, 5]], [[1, 2, 3, 4, 5, 6, 7, 7, 5, 8, 4, 9, 10, 10, 8]], [[1, 3, 4, 2, 9, 5, 6, 7, 9, 10, 10, 8, 6]], [[2, 3, 4, 4, 5, 4, 4, 4, 5, 6, 9, 4, 4]], [[5, 2, 2, 3, 3, 4, 3, 3]], [[10, 0, 2, 2, 4, 4, 4]], [[1, 2, 3, 7, 8, 9, 1, 10, 3, 1]], [[1, 2, 3, 4, 5, 6, 9, 7, 8, 9, 1, 10, 1, 4]], [[1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10, 10, 8, 7]], [[0, 0, 2, 11, 2]], [[2, 3, 2, 4, 5, 4, 4, 4, 5, 6]], [[1, 2, 3, 4, 2, 9, 5, 6, 7, 9, 10, 10, 8, 6, 10, 6]], [[1, 12, 2, 3, 4, 2, 10, 6, 7, 8, 10, 10, 7, 6, 4]], [[1, 2, 3, 5, 4, 6, 7, 8, 9, 10, 2, 11, 6]], [[10, 10, 8]], [[1, 2, 3, 7, 8, 9, 1, 10, 11, 1]], [[1, 10, 2, 3, 4, 5, 5, 6, 6, 8, 9, 7, 10, 10]], [[1, 0, 1, 1, 1, 1, 1]], [[1, 3, 2, 6, 3, 3, 3, 3, 6]], [[2, 3, 4, 4, 4, 4, 4, 5, 6, 5, 4]], [[1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 10, 10, 1, 4, 2]], [[0, 0, 2, 2, 11, 11, 4, 4]], [[1, 2, 2, 3, 4, 5, 6, 2, 8, 9, 10, 10, 5, 8, 6, 4, 9]], [[1, 2, 3, 5, 4, 6, 7, 2, 6, 6, 9, 10, 11, 11, 10, 10, 5]], [[1, 2, 3, 4, 5, 6, 2, 8, 9, 10, 10, 8, 6, 4]], [[1, 2, 3, 4, 5, 6, 9, 7, 8, 9, 1, 10, 5, 1, 4]], [[2, 3, 4, 4, 6, 4, 4, 4, 4, 5, 6, 5, 3]], [[2, 3, 7, 4, 4, 5, 4, 4, 4, 4, 5, 6, 5, 6]], [[1, 2, 3, 5, 4, 6, 7, 6, 6, 9, 10, 11, 10, 10, 5, 3, 6]], [[2, 3, 4, 4, 5, 4, 4, 4, 4, 5, 6, 5, 5]], [[1, 12, 2, 3, 4, 10, 6, 7, 8, 8, 10, 10, 7, 6, 4, 7, 10]], [[2, 3, 4, 4, 4, 4, 4, 4, 5, 7, 5, 4]], [[1, 3, 2, 6, 3, 4, 3, 3, 6]], [[1, 12, 2, 3, 4, 10, 6, 7, 8, 8, 10, 10, 7, 6, 4, 7, 10, 10]], [[0, 0, 2, 11, 0, 11]], [[1, 0, 2, 3, 6, 6, 8, 4, 10, 8, 6, 0]], [[1, 2, 3, 4, 5, 5, 6, 6, 8, 9, 1, 10, 10, 9, 9]], [[0, 1, 2, 0, 5, 4, 4, 0, 2]], [[1, 1, 1, 2, 2, 2, 3, 3, 3, 2]], [[0, 0, 3, 11, 0, 11]], [[1, 2, 3, 4, 5, 6, 4, 7, 9, 10, 10]], [[5, 2, 2, 3, 3, 4, 3, 3, 3]], [[1, 2, 3, 7, 9, 9, 1, 10, 3, 1]], [[1, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3]], [[1, 2, 2, 3, 4, 5, 6, 2, 8, 9, 4, 10, 5, 8, 6, 4, 9]], [[1, 2, 3, 4, 6, 2, 7, 8, 9, 1, 10, 6]], [[1, 12, 2, 3, 4, 2, 10, 6, 6, 8, 8, 10, 10, 7, 4, 2]], [[1, 2, 3, 5, 6, 7, 8, 9, 1, 10]], [[1, 2, 11, 3, 7, 9, 9, 1, 10, 3, 1]], [[1, 2, 3, 4, 5, 6, 7, 7, 5, 8, 4, 9, 10, 9, 8]], [[1, 2, 3, 7, 8, 9, 1, 10, 3, 1, 9]], [[1, 2, 4, 5, 6, 7, 8, 9, 1, 10]], [[1, 2, 3, 4, 10, 6, 7, 8, 8, 10, 6, 10, 8, 6]], [[1, 2, 4, 2, 2, 3, 3, 3, 3, 3, 3, 2]], [[1, 2, 3, 5, 4, 6, 7, 8, 9, 1, 10, 11]], [[1, 3, 8, 5, 6, 7, 7, 5, 8, 4, 5, 9, 10, 10, 8]], [[0, 0, 2, 2, 4, 4, 11, 4, 4]], [[0, 0, 2, 2]], [[1, 2, 3, 4, 6, 7, 6, 6, 9, 10, 11, 10, 6, 10, 5]], [[1, 2, 3, 8, 10, 6, 7, 8, 8, 10, 10, 8, 6]], [[1, 12, 4, 3, 4, 10, 6, 7, 8, 8, 10, 8, 10, 7, 6, 4, 8]], [[1, 2, 3, 5, 7, 8, 1, 10, 3, 9, 1]], [[1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 10, 9]], [[2, 3, 7, 4, 4, 5, 4, 4, 4, 6, 4, 5, 6, 5, 6]], [[1, 2, 3, 4, 6, 2, 6, 8, 9, 1, 10]], [[1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 10, 10, 8, 4]], [[1, 2, 2, 3, 4, 3, 5, 6, 7, 8, 8, 10, 10, 8]], [[1, 2, 3, 5, 4, 6, 7, 8, 9, 10, 8, 2, 11]], [[1, 2, 3, 4, 5, 6, 7, 7, 9, 10, 10, 8, 8]], [[0, 0, 1, 1, 0, 1, 1, 2, 2, 2, 2, 2, 2]], [[2, 0, 0, 3, 2, 2, 11, 4, 2]], [[0, 0, 2, 4, 4, 0, 4, 2]], [[1, 2, 2, 2, 2, 2, 2, 3, 2]], [[1, 2, 3, 4, 5, 5, 6, 6, 4, 8, 9, 1, 10, 10, 9, 9]], [[1, 2, 3, 4, 5, 6, 6, 8, 9, 1, 10, 10]], [[1, 12, 2, 3, 4, 6, 7, 8, 8, 3, 10, 10, 7, 6, 4]], [[7, 3, 10, 8, 0, 10]], [[1, 12, 2, 3, 4, 10, 6, 7, 8, 8, 10, 10, 7, 6, 4, 6, 10]], [[1, 2, 6, 2, 5, 5, 7, 9, 5, 10, 10]], [[2, 3, 4, 4, 5, 4, 4, 4, 4, 5, 6, 3, 5]], [[1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10, 10, 8, 7, 7]], [[1, 2, 4, 2, 2, 3, 3, 3, 3, 3, 3, 2, 3]], [[1, 2, 5, 4, 6, 7, 8, 9, 1, 10, 11, 1]], [[2, 3, 4, 4, 6, 4, 4, 4, 4, 5, 6, 5, 4]], [[1, 2, 3, 5, 4, 6, 7, 8, 9, 10, 8, 2, 11, 9]], [[0, 3, 11, 0, 11]], [[1, 2, 3, 5, 4, 6, 7, 2, 6, 6, 9, 10, 11, 10, 10, 5, 10]], [[0, 11, 2, 11, 2, 11, 4, 0]], [[11, 1, 2, 3, 5, 4, 6, 7, 8, 9, 10, 2, 11, 6]], [[1, 2, 3, 8, 5, 4, 6, 7, 6, 6, 9, 10, 11, 10, 10]], [[1, 2, 9, 3, 5, 2, 7, 7, 8, 9, 10, 10, 8]], [[0, 0, 2, 11, 2, 11]], [[2, 3, 4, 4, 5, 4, 4, 4, 5, 6, 9, 3, 4, 4]], [[1, 2, 3, 4, 5, 5, 6, 6, 8, 9, 7, 10, 10]], [[1, 2, 3, 4, 5, 6, 7, 9, 10, 10, 8, 8, 8]], [[2, 3, 4, 4, 5, 4, 10, 4, 4, 4, 5, 6, 5]], [[1, 12, 2, 10, 4, 2, 10, 6, 6, 8, 8, 10, 10, 7, 4, 2]], [[1, 2, 3, 5, 10, 4, 6, 7, 8, 9, 1, 7, 11, 9, 4, 5]], [[1, 1, 1, 0, 1, 1, 2, 2, 2, 2]], [[2, 0, 0, 3, 2, 2, 11, 2, 3]], [[0, 0, 2, 2, 4, 4, 11, 3, 0]], [[2, 3, 4, 4, 5, 4, 4, 4, 6, 9, 4]], [[1, 12, 2, 3, 4, 6, 7, 8, 8, 10, 10, 4, 6, 4, 7, 7]], [[10, 0, 11, 2, 11, 2, 11, 4, 0]], [[5, 0, 0, 2, 11, 2]], [[2, 4, 4, 5, 4, 4, 4, 5, 6, 9, 4, 4]], [[7, 0, 0, 2, 4, 4, 0, 4, 2]], [[1, 2, 3, 5, 6, 7, 9, 1, 10, 1, 4, 1]], [[1, 2, 3, 5, 4, 6, 7, 6, 6, 9, 10, 11, 10, 10, 5, 3, 6, 6]], [[0, 0, 2, 11, 2, 4, 0, 2]], [[1, 2, 4, 2, 2, 3, 3, 3, 3, 3, 3, 1, 4, 4]], [[2, 3, 4, 4, 6, 4, 4, 7, 4, 4, 5, 6, 5, 4]], [[0, 0, 2, 11, 4, 4, 4, 0]], [[1, 12, 2, 3, 4, 6, 7, 8, 8, 10, 10, 4, 6, 4, 7, 7, 6]], [[1, 12, 2, 3, 4, 10, 6, 6, 8, 8, 10, 10, 7, 4, 2]], [[1, 1, 2, 2, 2, 2, 3, 3, 3, 2, 2]], [[2, 3, 4, 4, 6, 4, 4, 4, 6, 9, 4]], [[7, 0, 2, 4, 4, 0, 4, 2]], [[5, 0, 2, 11, 2]], [[7, 0, 0, 2, 3, 4, 0, 4, 2]], [[12, 2, 3, 4, 6, 7, 8, 8, 10, 10, 7, 6, 4]], [[1, 12, 2, 3, 4, 8, 7, 8, 8, 10, 10, 4, 6, 4, 7, 7, 7]], [[1, 2, 3, 4, 5, 5, 6, 6, 8, 9, 1, 10, 10, 9, 9, 2]], [[7, 10, 8, 9]], [[1, 2, 6, 2, 5, 7, 9, 5, 10, 10]], [[1, 2, 4, 4, 2, 2, 3, 3, 3, 3, 3, 3, 2, 3]], [[1, 12, 2, 3, 4, 6, 7, 8, 8, 10, 10, 4, 6, 4, 7]], [[1, 2, 5, 6, 7, 9, 1, 10, 1, 4, 1]], [[1, 12, 2, 3, 4, 12, 6, 7, 8, 8, 10, 10, 7, 9, 6, 4]], [[1, 2, 4, 2, 2, 3, 3, 3, 3, 3, 11, 3, 1, 4]], [[1, 12, 2, 3, 4, 2, 10, 6, 7, 8, 10, 10, 7, 6, 8, 4]], [[2, 8, 3, 4, 4, 5, 4, 4, 4, 4, 5, 6]], [[1, 2, 4, 2, 2, 3, 0, 3, 3, 3, 3, 1, 4]], [[1, 2, 3, 4, 2, 9, 5, 6, 7, 9, 10, 10, 8, 6, 9]], [[1, 2, 2, 3, 9, 4, 3, 4, 6, 7, 8, 8, 10, 10, 8]], [[9, 0, 2, 4, 4, 0, 4, 2]], [[1, 2, 3, 7, 11, 8, 9, 1, 10, 3, 1, 3]], [[0, 0, 2, 2, 5, 4, 4, 11, 3, 0]], [[1, 2, 3, 10, 4, 5, 6, 7, 9, 10, 10, 10, 9]], [[0, 0, 2, 11, 2, 11, 4, 0, 4]], [[1, 3, 5, 6, 7, 1, 4, 5, 9, 10, 10, 8]], [[5, 0, 2, 2]], [[10, 8, 9]], [[2, 4, 4, 5, 4, 4, 4, 5, 6, 9, 4, 6, 4, 6]], [[1, 2, 2, 3, 4, 1, 6, 7, 8, 9, 10, 10, 8]], [[0, 2, 2, 2, 2, 2, 3]], [[1, 2, 4, 5, 6, 7, 8, 9, 10, 10, 8, 6, 10]], [[1, 12, 2, 3, 4, 2, 10, 6, 7, 10, 10, 7, 6, 8, 4]], [[1, 2, 3, 4, 5, 6, 6, 8, 9, 2, 10, 10]], [[1, 2, 4, 5, 6, 9, 7, 8, 9, 1, 10, 5, 1, 4]], [[1, 1, 1, 1, 1, 1, 1]], [[0, 1, 1, 2, 0, 5, 4, 4, 0, 2]], [[2, 7, 3, 7, 10, 10, 8]], [[12, 2, 3, 4, 6, 7, 8, 8, 9, 10, 7, 6, 4, 8]], [[1, 2, 3, 4, 6, 7, 8, 8, 10, 10, 7, 6, 4]], [[1, 2, 2, 3, 9, 8, 4, 3, 4, 6, 7, 8, 8, 10, 10, 8]], [[1, 3, 2, 6, 3, 3, 3, 3, 3]], [[1, 3, 5, 6, 7, 9, 1, 10, 1, 4, 1]], [[1, 1, 3, 1, 2, 2, 1, 2, 3, 3, 3, 2, 1]], [[0, 2, 2, 2, 2, 2, 3, 2]], [[2, 4, 4, 5, 4, 4, 12, 4, 5, 6, 5, 9, 4, 6, 4, 6]], [[1, 2, 2, 3, 4, 3, 5, 6, 7, 11, 8, 8, 10, 10, 8]], [[0, 0, 2, 2, 2, 11]], [[1, 2, 3, 6, 2, 6, 8, 9, 1, 10]], [[2, 3, 4, 6, 4, 4, 4, 4, 5, 6, 5, 3]], [[1, 2, 5, 4, 6, 7, 8, 10, 9, 1, 10, 3, 1, 6]], [[12, 2, 3, 4, 6, 6, 7, 8, 8, 10, 10, 7, 6, 4]], [[1, 2, 4, 5, 6, 7, 8, 9, 10, 8]], [[1, 2, 2, 4, 5, 6, 2, 8, 9, 10, 10, 8, 6, 4]], [[1, 2, 3, 5, 4, 6, 7, 8, 9, 10, 11, 1]], [[1, 2, 3, 5, 5, 7, 8, 9, 9, 10, 3]], [[1, 2, 3, 4, 5, 6, 6, 8, 9, 2, 10, 7, 10]], [[1, 2, 3, 5, 4, 6, 7, 8, 9, 2, 11]], [[1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 8, 2]], [[1, 2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 8, 9]], [[1, 2, 3, 3, 5, 6, 7, 8, 8, 10, 10, 8]], [[1, 3, 2, 3, 3, 3, 3, 3]], [[1, 2, 2, 2, 2, 2, 5, 3, 2]], [[2, 3, 2, 4, 5, 4, 4, 4, 5, 6, 4]], [[1, 2, 3, 8, 10, 6, 7, 8, 2, 8, 10, 10, 8]], [[1, 2, 3, 7, 8, 10, 9, 1, 10, 11, 1]], [[1, 2, 3, 5, 4, 6, 7, 11, 8, 9, 10, 11, 1]], [[1, 2, 3, 5, 4, 6, 7, 2, 6, 6, 9, 10, 11, 10, 9, 5]], [[2, 3, 4, 4, 4, 4, 4, 4, 5, 6, 5, 4, 4]], [[2, 4, 4, 5, 4, 4, 4, 5, 6, 5]], [[2, 3, 4, 5, 6, 7, 8, 9, 1, 10, 10, 1, 4, 9]], [[1, 12, 2, 3, 4, 2, 10, 6, 7, 8, 8, 10, 10, 7, 6, 4, 2]], [[9, 0, 2, 4, 0, 4, 2]], [[1, 2, 3, 4, 2, 9, 5, 6, 7, 9, 10, 10, 8, 6, 8, 6]], [[1, 2, 3, 5, 4, 6, 7, 6, 6, 9, 10, 11, 5, 10, 10, 5, 3, 6]], [[1, 2, 3, 5, 4, 6, 7, 6, 6, 9, 9, 10, 11, 10, 10, 5, 6, 1, 6]], [[1, 1, 3, 4, 5, 6, 7, 8, 9, 10, 10, 8, 6]], [[1, 1, 2, 3, 2, 2, 3, 3, 3, 2, 3]], [[1, 0, 2, 3, 4, 5, 6, 7, 7, 5, 8, 4, 9, 10, 10, 8]], [[1, 2, 2, 3, 4, 5, 6, 2, 8, 9, 4, 10, 5, 8, 6, 4, 9, 6]], [[1, 2, 3, 8, 5, 4, 6, 7, 6, 6, 9, 10, 11, 10, 10, 2]], [[5, 2, 2, 3, 3, 4, 3, 1, 3]], [[1, 2, 2, 4, 5, 6, 2, 8, 10, 10, 8, 6, 4]], [[1, 2, 3, 4, 5, 5, 6, 6, 8, 9, 1, 10, 10, 10, 9, 9, 2, 9]], [[12, 2, 2, 3, 4, 1, 6, 6, 8, 9, 10, 10, 8, 9]], [[1, 2, 5, 6, 7, 9, 1, 10, 3, 1]], [[0, 0, 2, 12]], [[1, 2, 4, 5, 6, 7, 8, 9, 1, 10, 7]], [[2, 3, 4, 4, 3, 6, 4, 4, 4, 4, 5, 6, 5]], [[0, 2, 2, 2, 2, 3]], [[1, 1, 2, 3, 5, 4, 6, 7, 2, 6, 6, 9, 10, 11, 10, 9, 5]], [[1, 2, 2, 8, 2, 2, 2, 2, 3, 2]], [[1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 10, 9, 3]], [[0, 0, 2, 2, 4, 4, 11, 4, 0]], [[1, 2, 3, 4, 6, 7, 6, 6, 9, 10, 2, 11, 10, 6, 9, 10, 5]], [[1, 0, 2, 11, 2, 11, 0]], [[1, 2, 2, 4, 5, 6, 2, 8, 9, 10, 10, 8, 6]], [[1, 3, 4, 2, 9, 5, 6, 7, 9, 9, 10, 8, 6, 3, 4]], [[1, 2, 3, 4, 5, 6, 6, 8, 9, 1, 10, 10, 1]], [[1, 3, 5, 6, 3, 4, 3, 3, 6]], [[1, 12, 2, 3, 4, 6, 7, 8, 7, 10, 10, 4, 6, 4, 7]], [[1, 2, 4, 5, 6, 7, 9, 1, 10, 2, 1]], [[1, 2, 6, 3, 5, 5, 9, 5, 10, 10]], [[10, 0, 1, 1, 2, 0, 5, 4, 4, 0, 2]], [[1, 12, 2, 3, 4, 10, 6, 7, 11, 8, 8, 10, 10, 7, 6, 4, 7, 10, 10]], [[2, 7, 4, 4, 5, 4, 3, 4, 4, 4, 5, 6, 12, 5, 6]], [[1, 0, 2, 1, 2, 3, 4, 12, 5, 6, 7, 7, 5, 8, 4, 9, 2, 10, 10, 8]], [[0, 0, 1, 1, 0, 1, 1, 2, 2, 9, 1, 2, 2]], [[1, 12, 2, 3, 4, 2, 6, 6, 8, 8, 10, 10, 7, 4, 2]], [[1, 2, 4, 5, 6, 7, 8, 9, 10, 1, 10, 10]], [[0, 6, 2, 2, 4, 4, 11, 4, 4, 4]], [[9, 0, 2, 4, 4, 0, 2, 4, 2]], [[1, 2, 5, 3, 4, 5, 6, 6, 8, 9, 1, 10, 10]], [[2, 7, 3, 4, 5, 6, 7, 8, 9, 1, 10]], [[7, 0, 2, 3, 4, 5, 6, 7, 8, 8, 9, 2, 10]], [[1, 9, 4, 9, 6, 7, 7, 8, 9, 9, 10, 8]], [[0, 3, 11, 11]], [[2, 1, 3, 5, 6, 3, 4, 3, 3, 6]], [[2, 3, 4, 4, 5, 4, 6, 9, 4]], [[1, 2, 4, 5, 6, 7, 8, 9, 10, 1, 10, 3, 10]], [[1, 2, 4, 5, 6, 7, 8, 9, 1, 10, 10]], [[0, 3, 11, 11, 11]], [[1, 2, 3, 4, 6, 7, 8, 8, 10, 10, 7, 6, 4, 10, 8]], [[1, 2, 3, 5, 4, 6, 7, 8, 9, 2, 11, 5]], [[1, 3, 2, 3, 3, 3, 3, 0]], [[1, 8, 2, 3, 6, 6, 8, 4, 10, 10, 8, 6, 1]], [[1, 2, 3, 4, 2, 9, 5, 6, 7, 9, 10, 2, 10, 8, 6, 8, 5]], [[1, 2, 2, 3, 4, 5, 6, 2, 8, 10, 10, 8, 6, 4, 2]], [[1, 2, 3, 4, 5, 6, 7, 9, 10, 10, 8, 8]], [[3, 2, 1, 3, 6, 6, 3, 4, 3, 3, 6, 5]], [[11, 1, 2, 3, 5, 4, 6, 7, 8, 9, 2, 11]], [[5, 5, 2, 3, 4, 5, 4, 4, 6, 4, 5, 6, 5]], [[1, 2, 2, 3, 4, 6, 6, 2, 8, 9, 4, 10, 5, 8, 6, 4, 9, 6, 6]], [[1, 2, 4, 5, 6, 9, 7, 8, 9, 1, 5, 10, 5, 1, 4]], [[1, 12, 2, 3, 4, 2, 10, 6, 7, 10, 7, 6, 8, 4]], [[0, 0, 1, 2, 11, 2]], [[5, 6, 0, 2, 11, 10]], [[0, 2, 2, 2, 2, 2, 11, 2]], [[1, 13, 2, 3, 4, 2, 10, 6, 7, 6, 8, 8, 10, 10, 7, 6, 4, 6]], [[1, 9, 4, 5, 6, 7, 8, 9, 1, 10, 10]], [[1, 3, 5, 6, 3, 4, 3, 3, 6, 5, 5]], [[5, 2, 6, 0, 2, 11, 10]], [[8, 2, 3, 7, 8, 9, 1, 10, 3, 1, 3]], [[1, 2, 4, 5, 6, 7, 7, 8, 9, 9, 10, 7]], [[2, 1, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3]], [[2, 3, 4, 4, 3, 6, 4, 4, 4, 4, 5, 5]], [[5, 5, 2, 3, 4, 5, 4, 7, 4, 6, 4, 5, 6, 5]], [[1, 2, 2, 3, 9, 4, 3, 4, 6, 7, 8, 13, 8, 10, 10, 8]], [[1, 2, 3, 5, 4, 6, 7, 6, 6, 9, 10, 6, 11, 11, 10, 10]], [[1, 2, 2, 2, 2, 9, 2, 3]], [[1, 2, 3, 4, 2, 9, 5, 6, 7, 9, 10, 2, 10, 8, 6, 8, 10]], [[1, 12, 2, 3, 4, 6, 7, 8, 7, 10, 10, 5, 6, 4, 7]], [[1, 3, 2, 6, 3, 3, 3, 6, 3]], [[1, 2, 3, 6, 2, 6, 9, 1, 10]], [[1, 2, 3, 6, 2, 6, 8, 9, 12, 10]], [[2, 4, 4, 5, 6, 7, 8, 9, 10, 10, 1, 4, 9]], [[1, 2, 3, 4, 2, 9, 5, 6, 7, 9, 10, 10, 6, 11, 6]], [[1, 1, 4, 4, 2, 3, 3, 3, 3, 3, 3, 3, 2, 3]], [[1, 6, 9, 4, 6, 7, 8, 9, 1, 10, 10, 6]], [[2, 4, 3, 4, 4, 4, 4, 4, 4, 5, 6, 5]], [[2, 2, 2, 2, 2, 11, 2, 2]], [[10, 1, 3, 4, 1, 2, 9, 5, 6, 7, 9, 10, 10, 8, 6]], [[9, 0, 2, 4, 4, 0, 2, 4, 2, 4]], [[2, 7, 4, 4, 4, 4, 3, 4, 4, 4, 6, 12, 5, 6]], [[5, 2, 2, 3, 5, 3, 4, 3, 3, 3]], [[4, 5, 2, 3, 4, 5, 4, 4, 6, 4, 5, 6, 5]], [[1, 2, 3, 4, 10, 6, 6, 8, 8, 10, 10, 7, 4, 2]], [[6, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]], [[1, 2, 4, 2, 2, 3, 0, 8, 3, 3, 3, 3, 1, 4]], [[1, 2, 3, 4, 5, 6, 6, 8, 9, 1, 10, 10, 10]], [[1, 2, 3, 4, 10, 6, 6, 6, 8, 8, 10, 10, 7, 4, 2]], [[1, 2, 3, 7, 9, 9, 1, 10, 3, 1, 1]], [[7, 0, 0, 2, 4, 4, 0, 4, 0]], [[2, 3, 4, 4, 4, 4, 8, 4, 4, 12, 6]], [[5, 0, 2, 2, 3]], [[2, 3, 4, 4, 5, 4, 4, 4, 4, 5, 6, 5, 5, 4, 5]], [[1, 2, 3, 4, 5, 6, 7, 7, 9, 1, 10, 10]], [[1, 12, 2, 3, 4, 2, 11, 6, 7, 10, 7, 6, 8, 4]], [[1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1]], [[1, 2, 3, 4, 10, 6, 6, 8, 8, 10, 10, 4, 2]], [[1, 12, 2, 4, 2, 10, 6, 7, 8, 8, 10, 7, 6, 4]], [[1, 2, 2, 3, 5, 6, 2, 8, 9, 10, 10, 8, 6, 4, 9, 10]], [[7, 0, 2, 3, 4, 5, 2, 6, 7, 8, 9, 2, 10, 3]]]
claude-3-haiku-20240307. fail_base: True, fail_plus: True
Here's the completed code for the problem:
```python
def is_sorted(lst):
'''
Given a list of numbers, return whether or not they are sorted
in ascending order. If list has more than 1 duplicate of the same
number, return False. Assume no negative numbers and only integers.
Examples
is_sorted([5]) ➞ True
is_sorted([1, 2, 3, 4, 5]) ➞ True
is_sorted([1, 3, 2, 4, 5]) ➞ False
is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
'''
if len(lst) <= 1:
return True
for i in range(1, len(lst)):
if lst[i] <= lst[i-1]:
if lst[i] == lst[i-1] and lst.count(lst[i]) > 1:
return False
else:
return False
return True
code-millenials-34b. fail_base: True, fail_plus: True
def is_sorted(lst):
if len(lst) == 1:
return True
elif len(lst) == 2:
return lst[0] < lst[1]
else:
for i in range(len(lst)-1):
if lst[i] > lst[i+1]:
return False
return True
speechless-coding-7b-16k-tora. fail_base: True, fail_plus: True
def is_sorted(lst):
if len(lst) <= 1:
return True
if lst[0] > lst[1]:
return False
for i in range(1, len(lst)-1):
if lst[i] > lst[i+1]:
return False
return True
claude-3-opus-20240229. fail_base: True, fail_plus: True
Here's the completed code wrapped in a markdown block:
```python
def is_sorted(lst):
'''
Given a list of numbers, return whether or not they are sorted
in ascending order. If list has more than 1 duplicate of the same
number, return False. Assume no negative numbers and only integers.
Examples
is_sorted([5]) ➞ True
is_sorted([1, 2, 3, 4, 5]) ➞ True
is_sorted([1, 3, 2, 4, 5]) ➞ False
is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
'''
if len(lst) <= 1:
return True
for i in range(1, len(lst)):
if lst[i] < lst[i-1]:
return False
elif lst[i] == lst[i-1] and lst.count(lst[i]) > 1:
return False
return True
mixtral-8x7b-instruct. fail_base: True, fail_plus: True
def is_sorted(lst):
'''
Given a list of numbers, return whether or not they are sorted
in ascending order. If list has more than 1 duplicate of the same
number, return False. Assume no negative numbers and only integers.
Examples
is_sorted([5]) ➞ True
is_sorted([1, 2, 3, 4, 5]) ➞ True
is_sorted([1, 3, 2, 4, 5]) ➞ False
is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
is_sorted([1, 2, 3, 4, 5, 6, 7])
mixtral-8x22b-instruct-v0.1. fail_base: True, fail_plus: True
def is_sorted(lst):
'''
Given a list of numbers, return whether or not they are sorted
in ascending order. If list has more than 1 duplicate of the same
number, return False. Assume no negative numbers and only integers.
Examples
is_sorted([5]) ➞ True
is_sorted([1, 2, 3, 4, 5]) ➞ True
is_sorted([1, 3, 2, 4, 5]) ➞ False
is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
'''
# Check if list is empty or has only one element
if len(lst) <= 1:
return True
# Check if list is sorted and has no more than 1 duplicate of the same number
for i in range(len(lst) - 1):
if lst[i] >= lst[i + 1] or lst[i] == lst[i + 1] and lst[i] in lst[:i]:
return False
return True
# Test cases
code-llama-multi-34b. fail_base: True, fail_plus: True
def is_sorted(lst):
'''
Given a list of numbers, return whether or not they are sorted
in ascending order. If list has more than 1 duplicate of the same
number, return False. Assume no negative numbers and only integers.
Examples
is_sorted([5]) ➞ True
is_sorted([1, 2, 3, 4, 5]) ➞ True
is_sorted([1, 3, 2, 4, 5]) ➞ False
is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
'''
if len(lst) == 1:
return True
if lst[0] > lst[1]:
return False
return is_sorted(lst[1:])
def is_sorted(lst):
'''
Given a list of numbers, return whether or not they are sorted
in ascending order. If list has more than 1 duplicate of the same
number, return False. Assume no negative numbers and only integers.
Examples
is_sorted([5]) ➞ True
is_sorted([1, 2, 3, 4, 5]) ➞ True
is_sorted([1, 3, 2, 4, 5]) ➞ False
is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
'''
if len(lst) == 1:
return True
if lst[0] > lst[1]:
return False
if lst[0] == lst[1]:
return False
return is_sorted(lst[1:])
def is_sorted(lst):
'''
Given a list of numbers, return whether or not they are sorted
in ascending order. If list has more than 1 duplicate of the same
number, return False. Assume no negative numbers and only integers.
Examples
is_sorted([5]) ➞ True
is_sorted([1, 2, 3, 4, 5]) ➞ True
is_sorted([1, 3, 2, 4, 5]) ➞ False
is_
Qwen--Qwen1.5-72B-Chat. fail_base: True, fail_plus: True
def is_sorted(lst):
if len(lst) < 2:
return True
if len(set(lst)) != len(lst):
return False
for i in range(len(lst) - 1):
if lst[i] > lst[i + 1]:
return False
return True
# Test cases
mistral-large-latest. fail_base: False, fail_plus: False
Sure, I can help with that. Here's a Python function that should solve the problem:
```python
def is_sorted(lst):
'''
Given a list of numbers, return whether or not they are sorted
in ascending order. If list has more than 1 duplicate of the same
number, return False. Assume no negative numbers and only integers.
'''
if len(lst) == 1:
return True
for i in range(1, len(lst)):
if lst[i] < lst[i-1]:
return False
elif lst[i] == lst[i-1]:
if i < len(lst) - 1 and lst[i] == lst[i+1]:
return False
return True
```
This function works by iterating over the list and comparing each element to the previous one. If it finds a pair where the current element is less than the previous one, it returns False, indicating that the list is not sorted in ascending order. If it finds a pair where the current element is equal to the previous one, it checks if the next element is also equal. If it is, it returns False, indicating that there are more than 1 duplicate of the same number. If it gets through the entire list without finding any such pairs, it returns True, indicating that the list is sorted in ascending order and contains at most 1 duplicate of each number.
HuggingFaceH4--starchat2-15b-v0.1. fail_base: True, fail_plus: True
def is_sorted(lst):
'''
Given a list of numbers, return whether or not they are sorted
in ascending order. If list has more than 1 duplicate of the same
number, return False. Assume no negative numbers and only integers.
Examples
is_sorted([5]) ➞ True
is_sorted([1, 2, 3, 4, 5]) ➞ True
is_sorted([1, 3, 2, 4, 5]) ➞ False
is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
'''
# Check if list is sorted
if lst != sorted(lst):
return False
# Check if there are more than 1 duplicate of the same number
for i in range(len(lst) - 1):
if lst[i] == lst[i + 1]:
return False
return True
# Test cases
codegemma-7b. fail_base: True, fail_plus: True
def is_sorted(lst):
if len(lst) < 2:
return True
if lst[0] != lst[1]:
return False
for i in range(1, len(lst)-1):
if lst[i] > lst[i+1]:
return False
return True
print(is_sorted([5])) # ➞ True
print(is_sorted([1, 2, 3, 4, 5])) # ➞ True
print(is_sorted([1, 3, 2, 4, 5])) # ➞ False
print(is_sorted([1, 2, 3, 4, 5, 6])) # ➞ True
print(is_sorted([1, 2, 3, 4, 5, 6, 7])) # ➞ True
print(is_sorted([1, 3, 2, 4, 5, 6, 7])) # ➞ False
print(is_sorted([1, 2, 2, 3, 3, 4])) # ➞ True
print(is_sorted([1, 2, 2, 2, 3, 4])) # ➞ False
code-llama-multi-13b. fail_base: True, fail_plus: True
def is_sorted(lst):
'''
Given a list of numbers, return whether or not they are sorted
in ascending order. If list has more than 1 duplicate of the same
number, return False. Assume no negative numbers and only integers.
Examples
is_sorted([5]) ➞ True
is_sorted([1, 2, 3, 4, 5]) ➞ True
is_sorted([1, 3, 2, 4, 5]) ➞ False
is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
'''
# Your code here
if len(lst) == 1:
return True
elif len(lst) == 2:
return lst[0] < lst[1]
else:
for i in range(len(lst) - 1):
if lst[i] > lst[i + 1]:
return False
elif lst[i] == lst[i + 1]:
return False
return True
print(is_sorted([1, 2, 3, 4, 5, 6, 7]))
print(is_sorted([1, 2, 3, 4, 5, 6, 7]))
print(is_sorted([1, 2, 3, 4, 5, 6, 7]))
print(is_sorted([1, 2, 3, 4, 5, 6, 7]))
print(is_sorted([1, 2, 3, 4, 5, 6, 7]))
print(is_sorted([1, 2, 3, 4, 5, 6, 7]))
print(is_sorted([1, 2, 3, 4, 5, 6, 7]))
print(is_sorted([1, 2, 3, 4, 5, 6, 7]))
print(is_sorted([1, 2, 3, 4, 5, 6, 7]))
print(is_sorted([1, 2, 3, 4, 5, 6, 7]))
print(is_sorted([1, 2, 3, 4, 5, 6, 7]))
print(is_sorted([1, 2, 3, 4, 5, 6, 7]))
print(is_sorted([1, 2, 3, 4, 5, 6, 7]))
print(is_sorted([1, 2, 3, 4, 5, 6, 7]))
print(is_sorted([1, 2, 3, 4, 5, 6, 7]))
deepseek-coder-6.7b-instruct. fail_base: True, fail_plus: True
Here is the Python function in a markdown style code block:
```python
def is_sorted(lst):
'''
Given a list of numbers, return whether or not they are sorted
in ascending order. If list has more than 1 duplicate of the same
number, return False. Assume no negative numbers and only integers.
Examples
is_sorted([5]) ➞ True
is_sorted([1, 2, 3, 4, 5]) ➞ True
is_sorted([1, 3, 2, 4, 5]) ➞ False
is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
'''
for i in range(len(lst) - 1):
if lst[i] >= lst[i + 1]:
return False
return True
```
This function works by iterating over the list and checking if each element is greater than or equal to the next one. If it finds an element that is not, it returns `False`. If it doesn't find any such elements, it returns `True`, indicating that the list is sorted in ascending order.
open-hermes-2.5-code-290k-13b. fail_base: True, fail_plus: True
def is_sorted(lst):
# Check if list is empty or has only one element
if len(lst) < 2:
return True
# Check if list has duplicates
if len(lst) != len(set(lst)):
return False
# Check if list is sorted in ascending order
for i in range(len(lst) - 1):
if lst[i] > lst[i + 1]:
return False
return True
# Test cases
print(is_sorted([5])) # ➞ True
print(is_sorted([1, 2, 3, 4, 5])) # ➞ True
print(is_sorted([1, 3, 2, 4, 5])) # ➞ False
print(is_sorted([1, 2, 3, 4, 5, 6])) # ➞ True
print(is_sorted([1, 2, 3, 4, 5, 6, 7])) # ➞ True
print(is_sorted([1, 3, 2, 4, 5, 6, 7])) # ➞ False
print(is_sorted([1, 2, 2, 3, 3, 4])) # ➞ True
print(is_sorted([1, 2, 2, 2, 3, 4])) # ➞ False
speechless-coder-ds-6.7b. fail_base: True, fail_plus: True
def is_sorted(lst):
if len(lst) == 1:
return True
for i in range(len(lst) - 1):
if lst[i] > lst[i + 1]:
return False
return True
codegemma-7b-it. fail_base: True, fail_plus: True
def is_sorted(lst):
'''
Given a list of numbers, return whether or not they are sorted
in ascending order. If list has more than 1 duplicate of the same
number, return False. Assume no negative numbers and only integers.
Examples
is_sorted([5]) ➞ True
is_sorted([1, 2, 3, 4, 5]) ➞ True
is_sorted([1, 3, 2, 4, 5]) ➞ False
is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
'''
if len(lst) == 1:
return True
for i in range(len(lst) - 1):
if lst[i] > lst[i + 1]:
return False
return True
deepseek-coder-33b. fail_base: True, fail_plus: True
def is_sorted(lst):
'''
Given a list of numbers, return whether or not they are sorted
in ascending order. If list has more than 1 duplicate of the same
number, return False. Assume no negative numbers and only integers.
Examples
is_sorted([5]) ➞ True
is_sorted([1, 2, 3, 4, 5]) ➞ True
is_sorted([1, 3, 2, 4, 5]) ➞ False
is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
'''
if len(lst) == 1:
return True
for i in range(len(lst) - 1):
if lst[i] > lst[i + 1]:
return False
return True
mistralai--Mistral-7B-Instruct-v0.2. fail_base: False, fail_plus: True
def is_sorted(lst):
'''
Given a list of numbers, return whether or not they are sorted
in ascending order. If list has more than 1 duplicate of the same
number, return False. Assume no negative numbers and only integers.
Examples
is_sorted([5]) ➞ True
is_sorted([1, 2, 3, 4, 5]) ➞ True
is_sorted([1, 3, 2, 4, 5]) ➞ False
is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
'''
def is_sorted(lst):
'''
Given a list of numbers, return whether or not they are sorted
in ascending order. If list has more than 1 duplicate of the same
number, return False. Assume no negative numbers and only integers.
'''
if not lst:
return True
for i in range(1, len(lst)):
if lst[i] < lst[i-1]:
return False
if i > 1 and lst[i] == lst[i-1]:
count = 1
for j in range(i+1, len(lst)):
if lst[i] == lst[j]:
count += 1
if count > 1:
return False
return True
return True
xwincoder-34b. fail_base: True, fail_plus: True
def is_sorted(lst):
'''
Given a list of numbers, return whether or not they are sorted
in ascending order. If list has more than 1 duplicate of the same
number, return False. Assume no negative numbers and only integers.
Examples
is_sorted([5]) ➞ True
is_sorted([1, 2, 3, 4, 5]) ➞ True
is_sorted([1, 3, 2, 4, 5]) ➞ False
is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
'''
for i in range(len(lst) - 1):
if lst[i] > lst[i + 1]:
return False
if lst[i] == lst[i + 1] and (i == 0 or lst[i - 1] != lst[i]):
return False
return True
code-13b. fail_base: True, fail_plus: True
def is_sorted(lst):
if len(lst) == 0:
return True
if len(lst) == 1:
return True
if lst[0] == lst[1]:
return is_sorted(lst[1:])
if lst[0] < lst[1]:
return is_sorted(lst[1:])
return False
# Testing the function
print(is_sorted([5])) # ➞ True
print(is_sorted([1, 2, 3, 4, 5])) # ➞ True
print(is_sorted([1, 3, 2, 4, 5, 6])) # ➞ True
print(is_sorted([1, 2, 3, 4, 5, 6, 7])) # ➞ True
print(is_sorted([1, 3, 2, 4, 5, 6, 7])) # ➞ False
print(is_sorted([1, 2, 2, 2, 3, 4])) # ➞ True
print(is_sorted([1, 2, 2, 2, 3, 4])) # ➞ False
wizardcoder-15b. fail_base: True, fail_plus: True
Here's the Python script for the problem:
```python
def is_sorted(lst):
'''
Given a list of numbers, return whether or not they are sorted
in ascending order. If list has more than 1 duplicate of the same
number, return False. Assume no negative numbers and only integers.
Examples
is_sorted([5]) ➞ True
is_sorted([1, 2, 3, 4, 5]) ➞ True
is_sorted([1, 3, 2, 4, 5]) ➞ False
is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
'''
for i in range(len(lst)-1):
if lst[i] > lst[i+1]:
return False
elif lst.count(lst[i]) > 1:
return False
return True
```
The function `is_sorted` takes a list of numbers as input and returns `True` if the list is sorted in ascending order and has no more than 1 duplicate of the same number. Otherwise, it returns `False`.
The function first checks if the list is sorted in ascending order by iterating through the list and comparing each element with the next element. If the next element is smaller than the current element, the function returns `False`. If the function reaches the end of the list without returning `False`, it means the list is sorted and the function returns `True`.
If the list has more than 1 duplicate of the same number, the function checks if there are any duplicates by using the `count` method. If the count of an element is greater than 1, the function returns `False`. If the function reaches the end of the list without returning `False`, it means the list has no more than 1 duplicate of the same number and the function returns `True`.
mistral-7b-codealpaca. fail_base: True, fail_plus: True
def is_sorted(lst):
'''
Given a list of numbers, return whether or not they are sorted
in ascending order. If list has more than 1 duplicate of the same
number, return False. Assume no negative numbers and only integers.
Examples
is_sorted([5]) ➞ True
is_sorted([1, 2, 3, 4, 5]) ➞ True
is_sorted([1, 3, 2, 4, 5]) ➞ False
is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
'''
if len(set(lst)) != len(lst):
return False
return True
deepseek-coder-33b-instruct. fail_base: True, fail_plus: True
Here is the Python function implemented in a markdown style code block:
```python
def is_sorted(lst):
'''
Given a list of numbers, return whether or not they are sorted
in ascending order. If list has more than 1 duplicate of the same
number, return False. Assume no negative numbers and only integers.
Examples
is_sorted([5]) ➞ True
is_sorted([1, 2, 3, 4, 5]) ➞ True
is_sorted([1, 3, 2, 4, 5]) ➞ False
is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
'''
return lst == sorted(lst) and len(lst) == len(set(lst))
```
This function works by first checking if the list is equal to its sorted version. If it is, that means the list is sorted in ascending order. Then it checks if the length of the list is equal to the length of the set of the list. If it is, that means there are no duplicates in the list. If both conditions are true, the function returns True, otherwise it returns False.
<|EOT|>
phi-2. fail_base: True, fail_plus: True
def is_sorted(lst):
'''
Given a list of numbers, return whether or not they are sorted
in ascending order. If list has more than 1 duplicate of the same
number, return False. Assume no negative numbers and only integers.
Examples
is_sorted([5]) ➞ True
is_sorted([1, 2, 3, 4, 5]) ➞ True
is_sorted([1, 3, 2, 4, 5]) ➞ False
is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
'''
if len(lst) == 1:
return True
elif len(lst) == 2:
return lst[0] <= lst[1]
else:
for i in range(len(lst) - 1):
if lst[i] > lst[i + 1]:
return False
return True
def is_sorted_recursive(lst):
'''
Given a list of numbers, return whether or not they are sorted
in ascending order. If list has more than 1 duplicate of the same
number, return False. Assume no negative numbers and only integers.
Examples
is_sorted_recursive([5]) ➞ True
is_sorted_recursive([1, 2, 3, 4, 5]) ➞ True
is_sorted_recursive([1, 3, 2, 4, 5]) ➞ False
is_sorted_recursive([1, 2, 3, 4, 5, 6]) ➞ True
is_sorted_recursive([1, 2, 3, 4, 5, 6, 7]) ➞ True
is_sorted_recursive([1, 3, 2, 4, 5, 6, 7]) ➞ False
is_sorted_recursive([1, 2, 2, 3, 3, 4]) ➞ True
is_sorted_recursive([1, 2, 2, 2, 3, 4]) ➞ False
'''
if len(lst) == 1:
return True
elif len(lst) == 2:
return lst[0] <= lst[1]
else:
return lst[0] <= is_sorted_recursive(lst[1:])
def is_sorted_recursive_2(lst):
'''
Given a list of numbers, return whether or not they are sorted
in ascending order. If list has more than 1 duplicate of the same
number, return False. Assume no negative numbers and only integers.
Examples
is_sorted_recursive_2([5]) ➞ True
is
bigcode--starcoder2-15b-instruct-v0.1. fail_base: True, fail_plus: True
def is_sorted(lst):
'''
Given a list of numbers, return whether or not they are sorted
in ascending order. If list has more than 1 duplicate of the same
number, return False. Assume no negative numbers and only integers.
Examples
is_sorted([5]) ➞ True
is_sorted([1, 2, 3, 4, 5]) ➞ True
is_sorted([1, 3, 2, 4, 5]) ➞ False
is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
'''
if len(lst) <= 1:
return True
prev = lst[0]
for curr in lst[1:]:
if curr < prev:
return False
if curr == prev:
return False
prev = curr
return True
white-rabbit-neo-33b-v1. fail_base: True, fail_plus: True
def is_sorted(lst):
# Check if the list is sorted and has no duplicates
return all(lst[i] < lst[i+1] for i in range(len(lst)-1)) and len(lst) == len(set(lst))
microsoft--Phi-3-mini-4k-instruct. fail_base: True, fail_plus: True
def is_sorted(lst):
"""
Given a list of numbers, return whether or not they are sorted
in ascending order. If list has more than 1 duplicate of the same
number, return False. Assume no negative numbers and only integers.
:param lst: List of integers
:return: Boolean indicating if the list is sorted and has no duplicates
"""
# Check for duplicates
if len(lst) != len(set(lst)):
return False
# Check if the list is sorted
for i in range(len(lst) - 1):
if lst[i] > lst[i + 1]:
return False
return True
# Test cases
speechless-codellama-34b. fail_base: True, fail_plus: True
def is_sorted(lst):
for i in range(len(lst)-1):
if lst[i] == lst[i+1]:
return False
elif lst[i] > lst[i+1]:
return False
return True
```
This function takes a list of integers as input and returns `True` if the list is sorted in ascending order and has no more than one duplicate of the same number. Otherwise, it returns `False`. The function iterates through the list and checks if the current element is equal to the next element or greater than the next element. If either condition is true, the function returns `False`. If the function reaches the end of the list without returning `False`, it returns `True`.
meta-llama-3-70b-instruct. fail_base: True, fail_plus: True
def is_sorted(lst):
return lst == sorted(lst, key=lambda x: (x, lst.count(x)))
print(is_sorted([5])) # ➞ True
print(is_sorted([1, 2, 3, 4, 5])) # ➞ True
print(is_sorted([1, 3, 2, 4, 5])) # ➞ False
print(is_sorted([1, 2, 3, 4, 5, 6])) # ➞ True
print(is_sorted([1, 2, 3, 4, 5, 6, 7])) # ➞ True
print(is_sorted([1, 3, 2, 4, 5, 6, 7])) # ➞ False
print(is_sorted([1, 2, 2, 3, 3, 4])) # ➞ True
print(is_sorted([1, 2, 2, 2, 3, 4])) # ➞ False
code-llama-70b-instruct. fail_base: True, fail_plus: True
def is_sorted(lst):
# Check if the list is empty
if not lst:
return True
# Check if the list has more than 1 duplicate of the same number
for i in lst:
if lst.count(i) > 1:
return False
# Check if the list is sorted in ascending order
for i in range(len(lst) - 1):
if lst[i] > lst[i + 1]:
return False
return True
# Test cases
print(is_sorted([5])) # Output: True
print(is_sorted([1, 2, 3, 4, 5])) # Output: True
print(is_sorted([1, 3, 2, 4, 5])) # Output: False
print(is_sorted([1, 2, 3, 4, 5, 6])) # Output: True
print(is_sorted([1, 2, 3, 4, 5, 6, 7])) # Output: True
print(is_sorted([1, 3, 2, 4, 5, 6, 7])) # Output: False
print(is_sorted([1, 2, 2, 3, 3, 4])) # Output: True
print(is_sorted([1, 2, 2, 2, 3, 4])) # Output: False
opencodeinterpreter-ds-33b. fail_base: True, fail_plus: True
```python
def is_sorted(lst):
if len(lst) != len(set(lst)):
return False
return lst == sorted(lst)
openchat. fail_base: True, fail_plus: True
def is_sorted(lst):
for i in range(len(lst) - 1):
if lst[i] > lst[i + 1]:
return False
return True
deepseek-coder-7b-instruct-v1.5. fail_base: True, fail_plus: True
def is_sorted(lst):
'''
Given a list of numbers, return whether or not they are sorted
in ascending order. If list has more than 1 duplicate of the same
number, return False. Assume no negative numbers and only integers.
Examples
is_sorted([5]) ➞ True
is_sorted([1, 2, 3, 4, 5]) ➞ True
is_sorted([1, 3, 2, 4, 5]) ➞ False
is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
'''
if len(lst) < 2:
return True
for i in range(len(lst) - 1):
if lst[i] >= lst[i + 1]:
return False
return True
speechless-starcoder2-7b. fail_base: True, fail_plus: True
def is_sorted(lst):
# Check if list is empty
if not lst:
return True
# Check if list has more than 1 duplicate of the same number
if len(lst) != len(set(lst)):
return False
# Check if list is sorted in ascending order
return lst == sorted(lst)
wizardcoder-7b. fail_base: True, fail_plus: True
Here's the Python script for the given problem:
def is_sorted(lst):
for i in range(len(lst)-1):
if lst[i] >= lst[i+1]:
return False
return True
# Test cases
print(is_sorted([5])) # True
print(is_sorted([1, 2, 3, 4, 5])) # True
print(is_sorted([1, 3, 2, 4, 5])) # False
print(is_sorted([1, 2, 3, 4, 5, 6])) # True
print(is_sorted([1, 3, 2, 4, 5, 6, 7])) # True
print(is_sorted([1, 2, 2, 3, 4])) # True
print(is_sorted([1, 2, 2, 2, 3, 4])) # False
octocoder. fail_base: True, fail_plus: True
def is_sorted(lst):
'''
Given a list of numbers, return whether or not they are sorted
in ascending order. If list has more than 1 duplicate of the same
number, return False. Assume no negative numbers and only integers.
Examples
is_sorted([5]) ➞ True
is_sorted([1, 2, 3, 4, 5]) ➞ True
is_sorted([1, 3, 2, 4, 5]) ➞ False
is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
'''
if len(lst) == 1:
return True
elif lst[0] > lst[1]:
return False
else:
return is_sorted(lst[1:])
gemma-1.1-7b-it. fail_base: True, fail_plus: True
def is_sorted(lst):
'''
Given a list of numbers, return whether or not they are sorted
in ascending order. If list has more than 1 duplicate of the same
number, return False. Assume no negative numbers and only integers.
Examples
is_sorted([5]) ➞ True
is_sorted([1, 2, 3, 4, 5]) ➞ True
is_sorted([1, 3, 2, 4, 5]) ➞ False
is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
'''
if len(lst) <= 1:
return True
for i in range(len(lst) - 1):
if lst[i] > lst[i + 1] or (lst[i] == lst[i + 1] and lst.count(lst[i]) > 1):
return False
return True
gpt-3.5-turbo. fail_base: True, fail_plus: True
Here is the code to complete the problem:
```python
def is_sorted(lst):
'''
Given a list of numbers, return whether or not they are sorted
in ascending order. If list has more than 1 duplicate of the same
number, return False. Assume no negative numbers and only integers.
Examples
is_sorted([5]) ➞ True
is_sorted([1, 2, 3, 4, 5]) ➞ True
is_sorted([1, 3, 2, 4, 5]) ➞ False
is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
'''
if len(lst) <= 1:
return True
for i in range(1, len(lst)):
if lst[i] <= lst[i-1]:
return False
return True
```
This code defines a function `is_sorted` that takes a list `lst` as input. It checks if the length of the list is less than or equal to 1, and if so, returns `True` since a list with 0 or 1 element is considered sorted. Otherwise, it iterates through the list starting from the second element and checks if each element is greater than the previous element. If any element is less than or equal to the previous element, it returns `False` since the list is not sorted. If the loop completes without finding any out-of-order elements, it returns `True` indicating that the list is sorted.
codebooga-34b. fail_base: True, fail_plus: True
def is_sorted(lst):
'''
Given a list of numbers, return whether or not they are sorted
in ascending order. If list has more than 1 duplicate of the same
number, return False. Assume no negative numbers and only integers.
Examples
is_sorted([5]) ➞ True
is_sorted([1, 2, 3, 4, 5]) ➞ True
is_sorted([1, 3, 2, 4, 5]) ➞ False
is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
'''
if len(lst) == 1:
return True
for i in range(len(lst)-1):
if lst[i] > lst[i+1]:
return False
if lst[i] == lst[i+1]:
if lst.count(lst[i]) > 1:
return False
return True
deepseek-coder-1.3b-instruct. fail_base: True, fail_plus: True
Here is the implementation of the function in markdown style:
```python
def is_sorted(lst):
'''
Given a list of numbers, return whether or not they are sorted
in ascending order. If list has more than 1 duplicate of the same
number, return False. Assume no negative numbers and only integers.
Examples:
is_sorted([5]) ➞ True
is_sorted([1, 2, 3, 4, 5]) ➞ True
is_sorted([1, 3, 2, 4, 5]) ➞ False
is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
'''
# Check if the list is empty
if not lst:
return True
# Check if the list has more than 1 duplicate of the same number
if len(lst) != len(set(lst)):
return False
# Check if the list is sorted in ascending order
for i in range(len(lst) - 1):
if lst[i] > lst[i + 1]:
return False
return True
```
This function first checks if the list is empty, if it is, it returns True because an empty list is considered sorted. Then it checks if the list has more than 1 duplicate of the same number, if it does, it returns False. After that, it checks if the list is sorted in ascending order, if it is, it returns True. Otherwise, it returns False.
speechless-mistral-7b. fail_base: True, fail_plus: True
def is_sorted(lst):
if len(lst) == 1:
return True
for i in range(len(lst) - 1):
if lst[i] > lst[i + 1]:
return False
return True
```
xdan-l1-chat. fail_base: True, fail_plus: True
def is_sorted(lst):
for i in range(1, len(lst)):
if lst[i] < lst[i - 1]:
return False
return True
solar-10.7b-instruct. fail_base: True, fail_plus: True
def is_sorted(lst):
'''
Given a list of numbers, return whether or not they are sorted
in ascending order. If list has more than 1 duplicate of the same
number, return False. Assume no negative numbers and only integers.
Examples
is_sorted([5]) ➞ True
is_sorted([1, 2, 3, 4, 5]) ➞ True
is_sorted([1, 3, 2, 4, 5]) ➞ False
is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
'''
def is_sorted(lst):
if not lst:
return True
if lst[0] < 0:
return False
for i in range(1, len(lst)):
if lst[i-1] >= lst[i]:
return False
# Check for more than 1 duplicate of the same number
counts = {}
for num in set(lst):
counts[num] = lst.count(num)
for value in counts.values():
if value > 1:
return False
return True
claude-3-sonnet-20240229. fail_base: False, fail_plus: False
Here's the code to solve the problem:
```python
def is_sorted(lst):
'''
Given a list of numbers, return whether or not they are sorted
in ascending order. If list has more than 1 duplicate of the same
number, return False. Assume no negative numbers and only integers.
Examples
is_sorted([5]) ➞ True
is_sorted([1, 2, 3, 4, 5]) ➞ True
is_sorted([1, 3, 2, 4, 5]) ➞ False
is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
'''
if len(lst) <= 1:
return True
prev = lst[0]
duplicates = 0
for num in lst[1:]:
if num < prev:
return False
elif num == prev:
duplicates += 1
if duplicates > 1:
return False
else:
prev = num
duplicates = 0
return True
code-33b. fail_base: True, fail_plus: True
def is_sorted(lst):
# Check if list is empty or has single element, return True directly
if len(lst) < 2:
return True
# Check if every element in the list is the same
if len(set(lst)) == 1:
return True
# Check if list has more than 1 duplicate of the same number
if len(lst) != len(set(lst)):
return False
# Check if list is sorted in ascending order
return all(lst[i] <= lst[i + 1] for i in range(len(lst) - 1))
starcoder2-15b-oci. fail_base: True, fail_plus: True
def is_sorted(lst):
'''
Given a list of numbers, return whether or not they are sorted
in ascending order. If list has more than 1 duplicate of the same
number, return False. Assume no negative numbers and only integers.
Examples
is_sorted([5]) ➞ True
is_sorted([1, 2, 3, 4, 5]) ➞ True
is_sorted([1, 3, 2, 4, 5]) ➞ False
is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
'''
# Your code here
def is_sorted(lst):
return sorted(lst) == lst
def is_sorted(lst):
return all(lst[i] <= lst[i+1] for i in range(len(lst)-1))
def is_sorted(lst):
return all(lst[i] <= lst[i+1] for i in range(len(lst)-1)) and len(set(lst)) == len(lst)
def is_sorted(lst):
return all(lst[i] <= lst[i+1] for i in range(len(lst)-1)) and len(lst) == len(set(lst))
def is_sorted(lst):
return all(lst[i] <= lst[i+1] for i in range(len(lst)-1)) and len(lst) == len(set(lst))
def is_sorted(lst):
return all(lst[i] <= lst[i+1] for i in range(len(lst)-1)) and len(lst) == len(set(lst))
def is_sorted(lst):
return all(lst[i] <= lst[i+1] for i in range(len(lst)-1)) and len(lst) == len(set(lst))
def is_sorted(lst):
return all(lst[i] <= lst[i+1] for i in range(len(lst)-1)) and len(lst) == len(set(lst))
def is_sorted(lst):
return all(lst[i] <= lst[i+1] for i in range(len(lst)-1)) and len(lst) == len(set(lst))
def is_sorted(lst):
return all(lst[i] <= lst[i+1] for i in range(len(lst)-1)) and len(lst) == len(set(lst))
def is_sorted(lst):
return all(lst[i] <= lst[i+1] for i in range(len(lst)-1)) and len(lst) == len(set(lst))
def is_sorted(lst):
return all(lst[i] <= lst[i+1] for i in range(len(lst
speechless-starcoder2-15b. fail_base: True, fail_plus: True
def is_sorted(lst):
if len(lst) == 1:
return True
for i in range(len(lst) - 1):
if lst[i] > lst[i + 1]:
return False
return True
python-code-13b. fail_base: True, fail_plus: True
def is_sorted(lst):
# Check if list has more than 1 duplicate of the same number
if len(lst) < 2:
return True
else:
for i in range(1, len(lst)):
if lst[i] == lst[i-1]:
return False
# Check if list is sorted in ascending order
for i in range(1, len(lst)):
if lst[i] < lst[i-1]:
return False
return True
opencodeinterpreter-ds-6.7b. fail_base: True, fail_plus: True
```python
def is_sorted(lst):
'''
Given a list of numbers, return whether or not they are sorted
in ascending order. If list has more than 1 duplicate of the same
number, return False. Assume no negative numbers and only integers.
Examples
is_sorted([5]) ➞ True
is_sorted([1, 2, 3, 4, 5]) ➞ True
is_sorted([1, 3, 2, 4, 5]) ➞ False
is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
'''
for i in range(len(lst) - 1):
if lst[i] > lst[i + 1]:
return False
return True