Mbpp/124

 """
Write a function to get the angle of a complex number.
assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
"""
 

solution

 
import cmath
def angle_complex(a,b):
  angle=cmath.phase(a+b)
  return angle
 

base input

 [(0.0, 1j), (2.0, 1j), (0.0, 2j)] 

plus input

 [(0.0, 0j), (0.0, 1j), (1e-100, 1e-100j), (1.0, (-0-1j)), (-3.0, 4j), (-1.0, 0.5j), (-1.0, (-0-2j)), (5.0, (-0-3j)), (1.0, (-0-1e-16j)), (-1000000.0, 1j), (0.001, 0.001j), (-0.002, 0.003j), (5000.0, (-0-5000j)), (0.0, 1j), (2.0, 1j), (0.0, 2j), (2.0, 2j), (5.0, (-0-1e-16j)), (-1000000.0, 1e-100j), (-1.0, -0.2094810906938558j), (0.001, 1.0104890444966959j), (0.0, 0.003j), (0.0, (-0-1e-16j)), (0.001, 1e-100j), (5.0, 2j), (1.0, 2.016370180069777j), (5.0, 0.003j), (-1000000.0, 0.003j), (-1.0, -1.1516856344430004j), (0.001, 0.6725319152086964j), (0.0, -0.010355262258335274j), (2.0, (-0-1j)), (-3.0, 1j), (5000.0, 0j), (0.0, 0.975464332791085j), (1.0, 1j), (0.0, 1.9698673032096357j), (0.001, 1.0219314567339677j), (5000.0, 0.003j), (1.0, 1j), (5000.0, 0.3936790862469757j), (-1.0, 0j), (1e-100, 1.0219314567339677j), (0.0, 0.6725319152086964j), (0.001, -0.8400056138335225j), (0.0, 1.0623785268964003j), (-2.0, (-0-2j)), (-1.0, (-0-1e-16j)), (-2.0, -1.4466815811938807j), (-0.420215439612294, 1.0219314567339677j), (0.0, -0.8400056138335225j), (-1.0, 0.003j), (2.0, (-0-3j)), (0.0, -0.7464229304074054j), (5.0, (-0-1j)), (-1.0, 0.7612695873124079j), (2.0, -2.62106615192279j), (1.0, 4j), (1.0, -0.24099175426302122j), (1.0, 1.0623785268964003j), (5001.0, 0.003j), (-3.0, 0.7612695873124079j), (1.0, 1.0104890444966959j), (0.001, (-0-3j)), (1.0, 0.6725319152086964j), (0.001, -0.8715172340818781j), (1.0, 3.2198297580460986j), (-0.24387354740075257, 1.0219314567339677j), (0.001, -1.1516856344430004j), (1e-100, -0.1029778505874197j), (5.0, -0.2094810906938558j), (-763284.5778121873, 1j), (2.0, 0.8691541649826418j), (0.0, -4999.924286520318j), (2.0, (-0-1e-16j)), (5000.0, (-0-1j)), (5000.0, -0.2094810906938558j), (1.0, -0.1029778505874197j), (5000.0, -0.010355262258335274j), (0.0007807920872595409, 0.6725319152086964j), (5001.0, 0.975464332791085j), (2.0, 0.975464332791085j), (0.0007732910823548642, 0.001j), (5000.0, 0.5697754263979038j), (3.0, 1j), (0.0007732910823548642, -0.6005568184440887j), (5.0, (-0-2j)), (-0.24387354740075257, 1e-100j), (-1.0, 2.016370180069777j), (5.0, 1j), (-3.0, -0.24099175426302122j), (5001.0, -0.2094810906938558j), (1.0, 0.746539818763773j), (1.0, 0.6430961891723811j), (5.0, (-0-1j)), (1.0, 3.0401020209872165j), (1.0, 0.5697754263979038j), (3.0, 0j), (5.0, 0.975464332791085j), (1.0, -0.010355262258335274j), (1.0, 1.2472534570917213j), (0.001, 0.2808016878272164j), (-0.24387354740075257, -0.6005568184440887j), (0.0, 1.6394342209431512j), (7.0, (-0-1j)), (-0.24387354740075257, 0.11629069822069693j), (5000.0, -4999.787677780481j), (2.0, 1j), (0.0, -0.6005568184440887j), (-1.0, 1j), (5.0, -0.7272148602507602j), (5001.0, 1.628767403187359j), (0.001, 0.6755064392822638j), (7.0, 1.2472534570917213j), (1.0, 0.8045352400481771j), (0.0, (-0-1j))] 

Generations

code-llama-multi-7b. fail_base: True, fail_plus: True

  """
Write a function to get the angle of a complex number.
assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
"""

import math


def angle_complex(real, imag):
    """
    Get the angle of a complex number.
    """
    if real == 0 and imag == 0:
        return 0
    if real == 0:
        if imag > 0:
            return math.pi / 2
        else:
            return -math.pi / 2
    if imag == 0:
        if real > 0:
            return 0
        else:
            return math.pi
    if real > 0:
        if imag > 0:
            return math.atan(imag / real)
        else:
            return math.pi + math.atan(imag / real)
    else:
        if imag > 0:
            return math.pi * 2 + math.atan(imag / real)
        else:
            return math.pi * 2 + math.atan(imag / real)


if __name__ == "__main__":
    print(angle_complex(0, 1j))
    print(angle_complex(1, 1j))
    print(angle_complex(1, 0))
    print(angle_complex(1, -1j))
    print(angle_complex(1, -1))
    print(angle_complex(1, 0))
    print(angle_complex(0, 1))
    print(angle_complex(0, -1))
    print(angle_complex(0, -1j))
    print(angle_complex(0, 0))
    print(angle_complex(1, 0))
    print(angle_complex(1, 1))
    print(angle_complex(1, 1j))
    print(angle_complex(1, 1))
    print(angle_complex(1, 1j))
    print(angle_complex(1, 1))
    print(angle_complex(1, 1j))
    print(angle_complex(1, 1))
    print(angle_complex(1, 1j))
    print(angle_complex(1, 1))
    print(angle_complex(1,

databricks--dbrx-instruct. fail_base: True, fail_plus: True

  import math

def angle_complex(real, imag):
    """
    Calculate the angle of a complex number.
    """
    return math.atan2(imag, real)

# Test the function
assert math.isclose(angle_complex(0, 1j), 1.5707963267948966, rel_tol=0.001)

CohereForAI--c4ai-command-r-plus. fail_base: True, fail_plus: True

  import math


def angle_complex(real, imag):
    """
    Get the angle of a complex number.

    Args:
        real (float): The real part of the complex number.
        imag (float): The imaginary part of the complex number.

    Returns:
        float: The angle of the complex number in radians.
    """
    return math.atan2(imag, real)
```

claude-3-haiku-20240307. fail_base: True, fail_plus: True

  Here's the solution wrapped in a Python markdown block:

```python
import math

def angle_complex(real, imag):
    """
    Get the angle of a complex number.
    
    Args:
        real (float): The real part of the complex number.
        imag (float): The imaginary part of the complex number.
    
    Returns:
        float: The angle of the complex number in radians.
    """
    return math.atan2(imag, real)

# Test the function
assert math.isclose(angle_complex(0, 1j), 1.5707963267948966, rel_tol=0.001)

code-millenials-34b. fail_base: True, fail_plus: True

  import cmath
import math

def angle_complex(x, y):
    return cmath.phase(x + y*1j)

assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)

dolphin-2.6. fail_base: True, fail_plus: True

  """
Write a function to get the angle of a complex number.
assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
"""
import math

def angle_complex(real, imag):
    angle = math.atan2(imag, real)
    return angle

# Test the function
assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)

claude-3-opus-20240229. fail_base: True, fail_plus: True

  Here's the code to get the angle of a complex number, wrapped in a markdown block:

```python
import cmath

def angle_complex(real, imag):
    """
    Returns the angle (in radians) of a complex number.
    
    Parameters:
    real (float): The real part of the complex number.
    imag (float): The imaginary part of the complex number.
    
    Returns:
    float: The angle of the complex number in radians.
    """
    return cmath.phase(complex(real, imag))

mixtral-8x7b-instruct. fail_base: True, fail_plus: True

  import cmath
import math

def angle_complex(real, imag):
    """
    Calculates the angle (in radians) of a complex number.
    """
    complex_num = real + imag*1j
    angle = cmath.phase(complex_num)
    return angle

# Test the function
assert math.isclose(angle_complex(0,1j).real, 1.5707963267948966, rel_tol=0.001)

wizardcoder-34b. fail_base: True, fail_plus: True

  Here's a Python function that calculates the angle of a complex number using the `cmath` module:

```python
import cmath

def angle_complex(a, b):
    return cmath.phase(complex(a, b))
```

The `cmath.phase()` function returns the phase angle of a complex number in radians. We can use this function to calculate the angle of a complex number by passing the real and imaginary parts as arguments. The function returns the angle in the range (-π, π].

We can test the function using the `assert` statement as shown in the problem statement:

```python
import math

assert math.isclose(angle_complex(0, 1j), 1.5707963267948966, rel_tol=0.001)
```

This will raise an `AssertionError` if the calculated angle is not within a tolerance of 0.001 of the expected value (π/2). 

mixtral-8x22b-instruct-v0.1. fail_base: True, fail_plus: True

  import cmath
import math

def angle_complex(real, imag):
    """
    Returns the angle of a complex number in radians.
    """
    return cmath.phase(complex(real, imag))

# Test the function
assert math.isclose(angle_complex(0, 1j), 1.5707963267948966, rel_tol=0.001)

code-llama-multi-34b. fail_base: True, fail_plus: True

  """
Write a function to get the angle of a complex number.
assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
"""

import math


def angle_complex(real, imag):
    """
    Return the angle of a complex number.
    """
    return math.atan2(imag, real)

Qwen--Qwen1.5-72B-Chat. fail_base: True, fail_plus: True

  import math

def angle_complex(real, imag):
    """
    Returns the angle of a complex number in radians.
    """
    angle = math.atan2(imag, real)
    return angle

# Test the function
assert math.isclose(angle_complex(0, 1j), 1.5707963267948966, rel_tol=0.001)

mistral-large-latest. fail_base: True, fail_plus: True

  Sure, here is the Python code to solve the problem:

```python
import math

def angle_complex(real, imag):
    """
    This function returns the angle of a complex number in radians.
    """
    return math.atan2(imag, real)

# Test the function
assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
```

In this code, `math.atan2(imag, real)` is used to calculate the angle of the complex number. The `math.atan2()` function returns the angle in radians (between the positive x-axis of a plane and the point given by the coordinates `(x, y)` on it) by taking the signs of the inputs into account.

codegen-2b. fail_base: True, fail_plus: True

  """
Write a function to get the angle of a complex number.
assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
"""

import math

def angle_complex(a, b):
    """
    >>> angle_complex(0,1j)
    1.5707963267948966
    >>> angle_complex(1,1j)
    0.0
    >>> angle_complex(1,0)
    1.5707963267948966
    >>> angle_complex(0,0)
    0.0
    >>> angle_complex(1,0)
    1.5707963267948966
    >>> angle_complex(0,0.5)
    1.5707963267948966
    >>> angle_complex(0.5,0)
    1.5707963267948966
    >>> angle_complex(0.5,0.5)
    0.0
    >>> angle_complex(0.5,0.5j)
    1.5707963267948966
    >>> angle_complex(0.5j,0.5)
    1.5707963267948966
    >>> angle_complex(0.5j,0.5j)
    0.0
    >>> angle_complex(0.5j,0)
    1.5707963267948966
    >>> angle_complex(0,0.5j)
    1.5707963267948966
    >>> angle_complex(0.5j,0)
    1.5707963267948966
    >>> angle_complex(0.5j,0.5j)
    0.0
    >>> angle_complex(0.5j,0.5)
    1.5707963267948966
    >>> angle_complex(0.5j,0)
    1.5707963267948966
    >>> angle_complex(0.5j,0.5)
    0.0
    >>> angle_complex(0.5j,0.5j)
    0.0
    >>> angle_complex(0.5j,0.5)
    0.0
    >>> angle_complex(0.5j,0)
    1.5707963267948966
    >>> angle_complex(0.5,0.

HuggingFaceH4--starchat2-15b-v0.1. fail_base: True, fail_plus: True

  import math
import cmath

def angle_complex(real, imag):
    """
    Function to get the angle of a complex number.
    """
    return cmath.phase(complex(real, imag))

# Test the function
assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)

codegemma-7b. fail_base: True, fail_plus: True

  """
Write a function to get the angle of a complex number.
assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
"""

import math
import cmath
def angle_complex(real, imag):
    return cmath.phase(complex(real, imag))

code-llama-multi-13b. fail_base: True, fail_plus: True

  """
Write a function to get the angle of a complex number.
assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
"""

import math

def angle_complex(x, y):
    """
    Write a function to get the angle of a complex number.
    assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
    """
    if x == 0 and y == 0:
        return 0
    elif x == 0 and y > 0:
        return math.pi / 2
    elif x == 0 and y < 0:
        return -math.pi / 2
    elif x > 0 and y == 0:
        return 0
    elif x < 0 and y == 0:
        return math.pi
    elif x > 0 and y > 0:
        return math.atan(y / x)
    elif x < 0 and y > 0:
        return math.atan(y / x) + math.pi
    elif x < 0 and y < 0:
        return math.atan(y / x) - math.pi
    elif x > 0 and y < 0:
        return math.atan(y / x) + 2 * math.pi


if __name__ == "__main__":
    print(angle_complex(0, 1j))
    print(angle_complex(0, -1j))
    print(angle_complex(1, 0))
    print(angle_complex(-1, 0))
    print(angle_complex(1, 1))
    print(angle_complex(-1, -1))
    print(angle_complex(-1, 1))
    print(angle_complex(1, -1))
    print(angle_complex(1, 1j))
    print(angle_complex(-1, -1j))
    print(angle_complex(-1, 1j))
    print(angle_complex(1, -1j))
    print(angle_complex(1j, 1))
    print(angle_complex(-1j, -1))
    print(angle_complex(-1j, 1))
    print

deepseek-coder-6.7b-instruct. fail_base: True, fail_plus: True

  Sure, here is the Python function in a markdown style code block:

```python
import cmath

def angle_complex(z):
    """
    This function calculates the angle of a complex number.
    """
    return cmath.phase(z)

# Test the function
assert math.isclose(angle_complex(0+1j), 1.5707963267948966, rel_tol=0.001)
```

In this code, we use the `cmath.phase()` function to calculate the phase of a complex number, which is the angle of the complex number in the complex plane. The `math.isclose()` function is used to check if the calculated angle is close to the expected value.

open-hermes-2.5-code-290k-13b. fail_base: True, fail_plus: True

  
import math

def angle_complex(real, imag):
    return math.degrees(math.atan2(imag, real))

assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)

codet5p-6b. fail_base: True, fail_plus: True

  """
Write a function to get the angle of a complex number.
assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
"""


import math

def angle_complex(x, y):
    return math.atan2(y.imag, y.real)

assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
assert math.isclose(angle_complex(1,0), 0.7853981633974483, rel_tol=0.001)
assert math.isclose(angle_complex(1,1), 1.5707963267948966, rel_tol=0.001)
assert math.isclose(angle_complex(1,2), 1.5707963267948966, rel_tol=0.001)
assert math.isclose(angle_complex(1,3), 1.5707963267948966, rel_tol=0.001)
assert math.isclose(angle_complex(1,4), 1.5707963267948966, rel_tol=0.001)
assert math.isclose(angle_complex(1,5), 1.5707963267948966, rel_tol=0.001)
assert math.isclose(angle_complex(1,6), 1.5707963267948966, rel_tol=0.001)
assert math.isclose(angle_complex(1,7), 1.5707963267948966, rel_tol=0.001)
assert math.isclose(angle_complex(1,8), 1.5707963267948966, rel_tol=0.001)
assert math.isclose(angle_complex(1,9), 1.5707963267948966, rel_tol=0.001)
assert math.isclose(angle_complex(1,10), 1.5707963267948966, rel_tol=0.001)
assert math.isclose(angle_complex(1,11), 1.5707963267948966, rel_tol=0.001)
assert math.isclose(angle_complex(1,12), 1.5707963267948966, rel_tol=0.001)
assert math.

codegemma-7b-it. fail_base: True, fail_plus: True

  import math

def angle_complex(real, imag):
    """
    Write a function to get the angle of a complex number.
    assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
    """
    if real == 0 and imag == 0:
        return None
    else:
        return math.atan(imag / real)

mistralai--Mistral-7B-Instruct-v0.2. fail_base: True, fail_plus: True

  """
Write a function to get the angle of a complex number.
assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
"""
import cmath
import math

def angle_complex(z):
    """
    Returns the angle (in radians) of a complex number.
    """
    return math.atan2(z.imag, z.real)

xwincoder-34b. fail_base: True, fail_plus: True

  import cmath
import math

def angle_complex(real, imag):
    complex_number = complex(real, imag)
    angle = cmath.phase(complex_number)
    return angle

# Test the function
assert math.isclose(angle_complex(0, 1j), 1.5707963267948966, rel_tol=0.001)

wizardcoder-15b. fail_base: True, fail_plus: True

  Here's a Python script that defines a function `angle_complex` that takes a complex number as input and returns its angle in radians:

```python
import math

def angle_complex(z):
    return math.atan2(z.imag, z.real)
```

The `math.atan2` function takes two arguments: the imaginary and real parts of the complex number. It returns the angle in radians between the positive real axis and the line from the origin to the complex number.

To test the function, we can use the `assert` statement to compare the result of `angle_complex(0,1j)` with the expected value of `1.5707963267948966`:

```python
assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
```

This `assert` statement checks whether the absolute difference between the actual and expected values is less than or equal to a tolerance of 0.001. If the difference is greater than the tolerance, the assertion fails and an error message is displayed.

code-llama-34b. fail_base: True, fail_plus: True

  """
Write a function to get the angle of a complex number.
assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
"""

import cmath
import math

def angle_complex(real, imag):
    return cmath.phase(complex(real, imag))

deepseek-coder-33b-instruct. fail_base: True, fail_plus: True

  Here is the Python function to get the angle of a complex number:

```python
import math

def angle_complex(z):
    """
    This function returns the angle of a complex number.
    """
    return math.atan2(z.imag, z.real)
```

You can use the `math.atan2` function to calculate the angle of a complex number. This function takes two arguments: the imaginary part of the complex number and the real part of the complex number. It returns the angle in radians.

You can use the `math.isclose` function to compare the result of `angle_complex(0,1j)` with `1.5707963267948966`. The `rel_tol` parameter is used to specify the relative tolerance – the maximum allowed difference between `angle_complex(0,1j)` and `1.5707963267948966` as a fraction of the magnitude of the second value.

phi-2. fail_base: True, fail_plus: True

  """
Write a function to get the angle of a complex number.
assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
"""

def angle_complex(z):
    return math.atan2(z.imag, z.real)

"""
Write a function to get the magnitude of a complex number.
assert math.isclose(magnitude_complex(0,1j), 1.4142135623730951, rel_tol=0.001)
"""

def magnitude_complex(z):
    return math.sqrt(z.real**2 + z.imag**2)

"""
Write a function to get the conjugate of a complex number.
assert math.isclose(conjugate_complex(0,1j), 0-1j, rel_tol=0.001)
"""

def conjugate_complex(z):
    return z.real - z.imag*1j

"""
Write a function to get the real part of a complex number.
assert math.isclose(real_complex(0,1j), 0, rel_tol=0.001)
"""

def real_complex(z):
    return z.real

"""
Write a function to get the imaginary part of a complex number.
assert math.isclose(imaginary_complex(0,1j), 1, rel_tol=0.001)
"""

def imaginary_complex(z):
    return z.imag

"""
Write a function to get the modulus of a complex number.
assert math.isclose(modulus_complex(0,1j), 1, rel_tol=0.001)
"""

def modulus_complex(z):
    return math.sqrt(z.real**2 + z.imag**2)

"""
Write a function to get the argument of a complex number.
assert math.isclose(argument_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
"""

def argument_complex(z):
    return math.atan2(z.imag, z.real)

"""
Write a function to get the polar coordinates of a complex number.
assert math.isclose(polar_complex(0,1j), (1.4142135623730951, 1.5707963

codet5p-2b. fail_base: True, fail_plus: True

  """
Write a function to get the angle of a complex number.
assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
"""


import math

def angle_complex(a, b):
    return math.atan2(a.imag, a.real)

assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
assert math.isclose(angle_complex(1,1j), 3.141592653589793, rel_tol=0.001)
assert math.isclose(angle_complex(1,0), 0, rel_tol=0.001)
assert math.isclose(angle_complex(0,0), 0, rel_tol=0.001)
assert math.isclose(angle_complex(0,1), 0, rel_tol=0.001)
assert math.isclose(angle_complex(1,0), 0, rel_tol=0.001)
assert math.isclose(angle_complex(0,0.5), 0, rel_tol=0.001)
assert math.isclose(angle_complex(0.5,0), 0, rel_tol=0.001)
assert math.isclose(angle_complex(0.5,0.5), 0, rel_tol=0.001)
assert math.isclose(angle_complex(0.5,1), 0, rel_tol=0.001)
assert math.isclose(angle_complex(1,0.5), 0, rel_tol=0.001)
assert math.isclose(angle_complex(1,1), 0, rel_tol=0.001)
assert math.isclose(angle_complex(1,0.5), 0, rel_tol=0.001)
assert math.isclose(angle_complex(0.5,1), 0, rel_tol=0.001)
assert math.isclose(angle_complex(0.5,0.5), 0, rel_tol=0.001)
assert math.isclose(angle_complex(0.5,1), 0, rel_tol=0.001)
assert math.isclose(angle_complex(1,0.5), 0, rel_tol=0.

bigcode--starcoder2-15b-instruct-v0.1. fail_base: True, fail_plus: True

  import math

def angle_complex(real: float, imag: float) -> float:
    """
    Returns the angle of a complex number.
    """
    return math.atan2(imag, real)
assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
```

codegemma-2b. fail_base: True, fail_plus: True

  """
Write a function to get the angle of a complex number.
assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
"""

import math

def angle_complex(real, imag):
    return math.atan2(imag, real)
<|file_separator|>

white-rabbit-neo-33b-v1. fail_base: True, fail_plus: True

  import math

def angle_complex(z):
    """
    Returns the angle of a complex number in radians.
    """
    return math.atan2(z.imag, z.real)

# Test the function
assert math.isclose(angle_complex(0+1j), 1.5707963267948966, rel_tol=0.001)

microsoft--Phi-3-mini-4k-instruct. fail_base: True, fail_plus: True

  import math
import cmath

def angle_complex(real, imaginary):
    """
    Calculate the angle (in radians) of a complex number.

    Parameters:
    real (float): The real part of the complex number.
    imaginary (float): The imaginary part of the complex number.

    Returns:
    float: The angle (in radians) of the complex number.
    """
    # Calculate the angle using cmath.phase()
    angle = cmath.phase(complex(real, imaginary))

    return angle

# Test the function
assert math.isclose(angle_complex(0, 1j), 1.5707963267948966, rel_tol=0.001)

speechless-codellama-34b. fail_base: True, fail_plus: True

  import math

def angle_complex(real, imag):
    return math.atan2(imag, real)

assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
```

meta-llama-3-70b-instruct. fail_base: True, fail_plus: True

  import math
import cmath

def angle_complex(real, imag):
    return cmath.phase(complex(real, imag))

assert math.isclose(angle_complex(0,1), 1.5707963267948966, rel_tol=0.001)

stable-code-3b. fail_base: True, fail_plus: True

  """
Write a function to get the angle of a complex number.
assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
"""

def angle_complex(x, y):
    """
    Return the angle of a complex number.
    """
    return math.atan2(y, x)

"""
Write a function to get the angle of a complex number.
assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
"""

def angle_complex(x, y):
    """
    Return the angle of a complex number.
    """
    return math.atan2(y, x)

"""
Write a function to get the angle of a complex number.
assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
"""

def angle_complex(x, y):
    """
    Return the angle of a complex number.
    """
    return math.atan2(y, x)

"""
Write a function to get the angle of a complex number.
assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
"""

def angle_complex(x, y):
    """
    Return the angle of a complex number.
    """
    return math.atan2(y, x)

"""
Write a function to get the angle of a complex number.
assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
"""

def angle_complex(x, y):
    """
    Return the angle of a complex number.
    """
    return math.atan2(y, x)

"""
Write a function to get the angle of a complex number.
assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
"""

def angle_complex(x, y):
    """
    Return the angle of a complex number.
    """
    return math.atan2(y, x)

"""
Write a function to get the angle of a complex number.
assert math.isclose(angle

codegen-6b. fail_base: True, fail_plus: True

  """
Write a function to get the angle of a complex number.
assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
"""

import math

def angle_complex(z):
    """
    >>> angle_complex(0,1j)
    1.5707963267948966
    >>> angle_complex(1,0)
    0.0
    >>> angle_complex(1,1)
    0.0
    >>> angle_complex(1,1j)
    1.5707963267948966
    >>> angle_complex(1+1j, 1+1j)
    0.0
    >>> angle_complex(1+1j, 1+1j)
    0.0
    >>> angle_complex(1+1j, 1+1j)
    0.0
    >>> angle_complex(1+1j, 1+1j)
    0.0
    >>> angle_complex(1+1j, 1+1j)
    0.0
    >>> angle_complex(1+1j, 1+1j)
    0.0
    >>> angle_complex(1+1j, 1+1j)
    0.0
    >>> angle_complex(1+1j, 1+1j)
    0.0
    >>> angle_complex(1+1j, 1+1j)
    0.0
    >>> angle_complex(1+1j, 1+1j)
    0.0
    >>> angle_complex(1+1j, 1+1j)
    0.0
    >>> angle_complex(1+1j, 1+1j)
    0.0
    >>> angle_complex(1+1j, 1+1j)
    0.0
    >>> angle_complex(1+1j, 1+1j)
    0.0
    >>> angle_complex(1+1j, 1+1j)
    0.0
    >>> angle_complex(1+1j, 1+1j)
    0.0
    >>> angle_complex(1+1j, 1+1j)
    0.0
    >>> angle_complex(1+1j, 1+1j)
    0.0
    >>> angle_complex(1+1j, 1+1j)
    0.0

gpt-4-1106-preview. fail_base: True, fail_plus: True

  """
Write a function to get the angle of a complex number.
assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
"""


import math

def angle_complex(complex_number):
    return math.atan2(complex_number.imag, complex_number.real)

# Example usage:
# angle = angle_complex(0 + 1j)
# print(angle)

gemma-7b-it. fail_base: True, fail_plus: True

  import math

def angle_complex(a, b):
    """
    Get the angle of a complex number.

    Args:
        a: The real part of the complex number.
        b: The imaginary part of the complex number.

    Returns:
        The angle of the complex number in radians.
    """

    # Calculate the magnitude of the complex number.
    r = math.sqrt(a**2 + b**2)

    # Calculate the angle of the complex number.
    theta = math.atan(b/a)

    # Return the angle of the complex number.
    return theta

opencodeinterpreter-ds-33b. fail_base: True, fail_plus: True

  ```python
import math

def angle_complex(z):
    return math.atan2(z.imag, z.real)

# Test the function
assert math.isclose(angle_complex(0+1j), 1.5707963267948966, rel_tol=0.001)

openchat. fail_base: True, fail_plus: True

  import math

def angle_complex(real, imag):
    angle = math.atan2(imag, real)
    return angle

assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)

speechless-starcoder2-7b. fail_base: True, fail_plus: True

  import math

def angle_complex(real, imag):
    return math.atan2(imag, real)

assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)

wizardcoder-7b. fail_base: True, fail_plus: True

  Here's a Python function that takes a complex number as input and returns its angle in radians:

```python
import math

def angle_complex(z):
    return math.atan2(z.imag, z.real)
```

This function uses the `math.atan2()` function to calculate the angle of the complex number `z` in radians. The `math.atan2()` function takes two arguments: the `y` coordinate and the `x` coordinate of the complex number, and returns the angle in radians. Since the `y` coordinate is `0` for the given input, we only need to pass in the `x` coordinate, which is `1j`. The `math.atan2()` function returns the angle in the range `-pi <= angle <= pi`, so we don't need to worry about the quadrant of the number. We can use `math.pi` to convert the angle to radians if needed.

To test the function, we can use the `math.isclose()` function to check if the result is close to the expected value:

```python
assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
```

This asserts that the angle of `0 + 1j` is close to `pi/2` (1.5707963267948966 radians) within a relative tolerance of 0.001. If the function works correctly, the assertion should pass. 

octocoder. fail_base: False, fail_plus: False

  """
Write a function to get the angle of a complex number.
assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
"""


import math

def angle_complex(x, y):
    return math.atan2(y.imag, x.real)

gemma-1.1-7b-it. fail_base: True, fail_plus: True

  import math

def angle_complex(z):
    """
    Get the angle of a complex number.

    Args:
        z (complex): The complex number.

    Returns:
        float: The angle of the complex number.
    """
    if z.real == 0 and z.imag == 0:
        return 0
    return math.atan(z.imag / z.real)

assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)

deepseek-coder-6.7b-base. fail_base: True, fail_plus: True

  """
Write a function to get the angle of a complex number.
assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
"""

import math

def angle_complex(a, b):
    return math.atan2(b, a)

assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)

codegen-16b. fail_base: True, fail_plus: True

  """
Write a function to get the angle of a complex number.
assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
"""

import math

def angle_complex(z):
    """
    >>> angle_complex(0,1j)
    1.5707963267948966
    >>> angle_complex(1,0)
    0.0
    >>> angle_complex(1,1)
    0.0
    >>> angle_complex(1,1j)
    1.5707963267948966
    >>> angle_complex(1+1j, 1+1j)
    0.0
    >>> angle_complex(1+1j, 1+1j)
    0.0
    >>> angle_complex(1+1j, 1+1j)
    0.0
    >>> angle_complex(1+1j, 1+1j)
    0.0
    >>> angle_complex(1+1j, 1+1j)
    0.0
    >>> angle_complex(1+1j, 1+1j)
    0.0
    >>> angle_complex(1+1j, 1+1j)
    0.0
    >>> angle_complex(1+1j, 1+1j)
    0.0
    >>> angle_complex(1+1j, 1+1j)
    0.0
    >>> angle_complex(1+1j, 1+1j)
    0.0
    >>> angle_complex(1+1j, 1+1j)
    0.0
    >>> angle_complex(1+1j, 1+1j)
    0.0
    >>> angle_complex(1+1j, 1+1j)
    0.0
    >>> angle_complex(1+1j, 1+1j)
    0.0
    >>> angle_complex(1+1j, 1+1j)
    0.0
    >>> angle_complex(1+1j, 1+1j)
    0.0
    >>> angle_complex(1+1j, 1+1j)
    0.0
    >>> angle_complex(1+1j, 1+1j)
    0.0
    >>> angle_complex(1+1j, 1+1j)
    0.0

mistral-7b. fail_base: True, fail_plus: True

  """
Write a function to get the angle of a complex number.
assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
"""

import math

def angle_complex(x, y):
    return math.atan2(y, x)

assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)

speechless-mistral-7b. fail_base: True, fail_plus: True

  import math

def angle_complex(real, imag):
    return math.atan2(imag, real)

assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
```

codet5p-16b. fail_base: True, fail_plus: True

  """
Write a function to get the angle of a complex number.
assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
"""


import math

def angle_complex(z):
    return math.atan2(z.imag, z.real)

assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
assert math.isclose(angle_complex(0,1), 0.0, rel_tol=0.001)
assert math.isclose(angle_complex(0,0), 0.0, rel_tol=0.001)
assert math.isclose(angle_complex(1,0), 1.5707963267948966, rel_tol=0.001)
assert math.isclose(angle_complex(1,1), 0.7853981633974483, rel_tol=0.001)
assert math.isclose(angle_complex(1,-1), 1.5707963267948966, rel_tol=0.001)
assert math.isclose(angle_complex(1,2), 0.7853981633974483, rel_tol=0.001)
assert math.isclose(angle_complex(1,3), 0.7853981633974483, rel_tol=0.001)
assert math.isclose(angle_complex(1,4), 0.7853981633974483, rel_tol=0.001)
assert math.isclose(angle_complex(1,5), 0.7853981633974483, rel_tol=0.001)
assert math.isclose(angle_complex(1,6), 0.7853981633974483, rel_tol=0.001)
assert math.isclose(angle_complex(1,7), 0.7853981633974483, rel_tol=0.001)
assert math.isclose(angle_complex(1,8), 0.7853981633974483, rel_tol=0.001)
assert math.isclose(angle_complex(1,9), 0.7853981633974483, rel_tol=0.001)
assert math.isclose(angle_complex(1,10), 0.785

code-llama-13b. fail_base: True, fail_plus: True

  """
Write a function to get the angle of a complex number.
assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
"""

import math


def angle_complex(real, imaginary):
    return math.atan(imaginary / real)

xdan-l1-chat. fail_base: True, fail_plus: True

  import math

def angle_complex(real, imaginary):
    angle = math.atan2(imaginary, real)
    return angle

assert math.isclose(angle_complex(0, 1j), 1.5707963267948966, rel_tol=0.001)

solar-10.7b-instruct. fail_base: True, fail_plus: True

  """
Write a function to get the angle of a complex number.
assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
"""
from math import pi, radians, isclose

def angle_complex(real_part, imag_part):
    magnitude = math.hypot(real_part, imag_part)
    angle = radians(math.atan2(imag_part, real_part))
    return angle - pi/2 if imag_part < 0 else angle

assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)

gemma-2b. fail_base: True, fail_plus: True

  """
Write a function to get the angle of a complex number.
assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
"""


import math

def angle_complex(real, imaginary):
    return math.atan2(imaginary, real)

claude-3-sonnet-20240229. fail_base: True, fail_plus: True

  Here's the solution wrapped in a markdown block:

```python
import math

def angle_complex(real, imag):
    """
    Returns the angle (in radians) of a complex number.
    
    Args:
        real (float): The real part of the complex number.
        imag (float): The imaginary part of the complex number.
        
    Returns:
        float: The angle of the complex number in radians.
    """
    angle = math.atan2(imag, real)
    return angle

# Test case
assert math.isclose(angle_complex(0, 1j), 1.5707963267948966, rel_tol=0.001)

starcoder2-15b-oci. fail_base: True, fail_plus: True

  """
Write a function to get the angle of a complex number.
assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
"""


import math

def angle_complex(real, imag):
    return math.atan2(imag, real)

starcoder2-3b. fail_base: True, fail_plus: True

  """
Write a function to get the angle of a complex number.
assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
"""

def angle_complex(x, y):
    return math.atan2(y, x)

"""
Write a function to get the distance between two complex numbers.
assert math.isclose(distance_complex(0,1j, 1,1), 1.4142135623730951, rel_tol=0.001)
"""

def distance_complex(x1, y1, x2, y2):
    return math.sqrt((x2-x1)**2 + (y2-y1)**2)

"""
Write a function to get the sum of two complex numbers.
assert math.isclose(sum_complex(0,1j, 1,1), 1+1j, rel_tol=0.001)
"""

def sum_complex(x1, y1, x2, y2):
    return x1+x2, y1+y2

"""
Write a function to get the difference of two complex numbers.
assert math.isclose(difference_complex(0,1j, 1,1), -1+1j, rel_tol=0.001)
"""

def difference_complex(x1, y1, x2, y2):
    return x1-x2, y1-y2

"""
Write a function to get the product of two complex numbers.
assert math.isclose(product_complex(0,1j, 1,1), 0+1j, rel_tol=0.001)
"""

def product_complex(x1, y1, x2, y2):
    return x1*x2-y1*y2, x1*y2+y1*x2

"""
Write a function to get the quotient of two complex numbers.
assert math.isclose(quotient_complex(0,1j, 1,1), 0+1j, rel_tol=0.001)
"""

def quotient_complex(x1, y1, x2, y2):
    return (x1*x2+y1*y2)/(x2**2+y2**2), (y1*x

speechless-starcoder2-15b. fail_base: True, fail_plus: True

  import math
import cmath

def angle_complex(real, imag):
    return cmath.phase(complex(real, imag))

assert math.isclose(angle_complex(0,1), math.pi/2, rel_tol=0.001)

gemma-7b. fail_base: True, fail_plus: True

  """
Write a function to get the angle of a complex number.
assert math.isclose(angle_complex(0,1j), 1.5707963267948966, rel_tol=0.001)
"""

import math
import unittest


def angle_complex(a, b):
    return math.atan2(b, a)


class TestAngleComplex(unittest.TestCase):
    def test_angle_complex(self):
        self.assertAlmostEqual(angle_complex(0, 1), math.pi / 2, places=3)
        self.assertAlmostEqual(angle_complex(1, 0), 0, places=3)
        self.assertAlmostEqual(angle_complex(-1, 1), 3 * math.pi / 4, places=3)
        self.assertAlmostEqual(angle_complex(-1, -1), math.pi / 4, places=3)
        self.assertAlmostEqual(angle_complex(-1, 0), math.pi, places=3)
        self.assertAlmostEqual(angle_complex(1, -1), -3 * math.pi / 4, places=3)
        self.assertAlmostEqual(angle_complex(0, -1), -math.pi / 2, places=3)

opencodeinterpreter-ds-6.7b. fail_base: True, fail_plus: True

  ```python
import cmath

def angle_complex(z):
    """
    Function to get the angle of a complex number.
    """
    return cmath.phase(z)

# Test the function
import math
assert math.isclose(angle_complex(0+1j), 1.5707963267948966, rel_tol=0.001)