"""
Write a python function to check whether the given number can be represented as sum of non-zero powers of 2 or not.
assert is_Sum_Of_Powers_Of_Two(10) == True
"""
def is_Sum_Of_Powers_Of_Two(n):
return n > 0 and n % 2 == 0
[[10], [7], [14]]
[[123456789], [-14], [-2147483648], [-15], [123456788], [-2147483647], [123456787], [-2147483649], [-2147483650], [True], [-2147483651], [-16], [False], [-2147483646], [123456786], [-17], [-88], [-18], [-19], [-20], [123456785], [-7], [-6], [-2147483652], [-2147483653], [-2147483645], [-2147483654], [123456784], [-86], [-2147483643], [-87], [123456783], [21], [-2147483655], [-85], [-9], [-21], [-10], [19], [-22], [-89], [10], [123456782], [-2147483642], [-23], [-2147483641], [-11], [-8], [-90], [18], [-5], [123456790], [-4], [20], [-2147483640], [9], [123456781], [123456791], [-2147483644], [123456780], [-2147483639], [8], [42], [123456792], [-2147483656], [-13], [-2147483657], [41], [43], [-91], [-2147483638], [-2147483637], [-12], [40], [123456779], [44], [123456793], [28], [29], [45], [123456778], [39], [-55], [82], [-92], [-43], [-3], [27], [11], [-2147483636], [-50], [12], [61], [17], [7], [-75], [81], [-44], [-36], [79], [-45], [-51], [46]]
code-llama-multi-7b. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as sum of non-zero powers of 2 or not.
assert is_Sum_Of_Powers_Of_Two(10) == True
"""
def is_Sum_Of_Powers_Of_Two(n):
if n == 0:
return False
while n > 0:
if n % 2 == 1:
return False
n = n // 2
return True
if __name__ == '__main__':
print(is_Sum_Of_Powers_Of_Two(10))
print(is_Sum_Of_Powers_Of_Two(11))
print(is_Sum_Of_Powers_Of_Two(12))
print(is_Sum_Of_Powers_Of_Two(13))
print(is_Sum_Of_Powers_Of_Two(14))
print(is_Sum_Of_Powers_Of_Two(15))
print(is_Sum_Of_Powers_Of_Two(16))
print(is_Sum_Of_Powers_Of_Two(17))
print(is_Sum_Of_Powers_Of_Two(18))
print(is_Sum_Of_Powers_Of_Two(19))
print(is_Sum_Of_Powers_Of_Two(20))
print(is_Sum_Of_Powers_Of_Two(21))
print(is_Sum_Of_Powers_Of_Two(22))
print(is_Sum_Of_Powers_Of_Two(23))
print(is_Sum_Of_Powers_Of_Two(24))
print(is_Sum_Of_Powers_Of_Two(25))
print(is_Sum_Of_Powers_Of_Two(26))
print(is_Sum_Of_Powers_Of_Two(27))
print(is_Sum_Of_Powers_Of_Two(28))
print(is_Sum_Of_Powers_Of_Two(29))
print(is_Sum_Of_Powers
databricks--dbrx-instruct. fail_base: True, fail_plus: True
def is_Sum_Of_Powers_Of_Two(n: int) -> bool:
"""
This function checks whether the given number can be represented as sum of non-zero powers of 2 or not.
:param n: int
:return: bool
"""
if n < 1:
return False
while n % 2 == 0:
n //= 2
return n == 1
# Test the function
assert is_Sum_Of_Powers_Of_Two(10) == True
assert is_Sum_Of_Powers_Of_Two(12) == False
assert is_Sum_Of_Powers_Of_Two(15) == True
assert is_Sum_Of_Powers_Of_Two(16) == True
assert is_Sum_Of_Powers_Of_Two(17) == False
CohereForAI--c4ai-command-r-plus. fail_base: True, fail_plus: True
def is_Sum_Of_Powers_Of_Two(n: int) -> bool:
if n == 0:
return False
while n > 0:
if n % 2 != 0:
if n == 1:
return True
else:
return False
n = n // 2
return False
```
claude-3-haiku-20240307. fail_base: True, fail_plus: True
Here's the solution wrapped in a Python markdown block:
```python
def is_Sum_Of_Powers_Of_Two(n):
"""
Checks whether the given number can be represented as sum of non-zero powers of 2 or not.
Args:
n (int): The number to be checked.
Returns:
bool: True if the number can be represented as sum of non-zero powers of 2, False otherwise.
"""
if n <= 0:
return False
# Convert the number to binary string
binary_str = bin(n)[2:]
# Check if the binary string contains only '1' characters
return all(char == '1' for char in binary_str)
# Example usage
assert is_Sum_Of_Powers_Of_Two(10) == True
code-millenials-34b. fail_base: True, fail_plus: True
def is_Sum_Of_Powers_Of_Two(n):
if n <= 0:
return False
while n > 0:
if n & 1:
n -= 1
else:
n >>= 1
return n == 0
assert is_Sum_Of_Powers_Of_Two(10) == True
dolphin-2.6. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as sum of non-zero powers of 2 or not.
assert is_Sum_Of_Powers_Of_Two(10) == True
"""
def is_Sum_Of_Powers_Of_Two(n):
# Convert the number to binary
binary = bin(n)[2:]
# Check if all the bits are 1
return all(i == '1' for i in binary)
# Test the function
assert is_Sum_Of_Powers_Of_Two(10) == True
claude-3-opus-20240229. fail_base: True, fail_plus: True
Here's the code to solve the problem, wrapped in a markdown block:
```python
def is_Sum_Of_Powers_Of_Two(num):
powers = [1]
while powers[-1] < num:
powers.append(powers[-1] * 2)
for i in range(len(powers) - 1, -1, -1):
if num >= powers[i]:
num -= powers[i]
return num == 0
mixtral-8x7b-instruct. fail_base: True, fail_plus: True
def is_Sum_Of_Powers_Of_Two(n):
"""
Check if the given number can be represented as sum of non-zero powers of 2.
:param n: The number to check
:return: True if the number can be represented as sum of non-zero powers of 2, False otherwise
"""
if n == 0:
return False
else:
while n % 2 ==
wizardcoder-34b. fail_base: True, fail_plus: True
Here's the Python function to check whether the given number can be represented as sum of non-zero powers of 2 or not:
```python
def is_Sum_Of_Powers_Of_Two(n):
"""
This function takes an integer n as input and returns True if it can be represented as sum of non-zero powers of 2, otherwise False.
"""
while n > 0:
if n % 2 == 0:
n = n // 2
else:
if n == 1:
return True
else:
return False
return True
```
Explanation:
- We start with the given number n and keep dividing it by 2 until it becomes 1 or an odd number.
- If it becomes 1, then it means that all the previous numbers were even and hence can be represented as sum of non-zero powers of 2.
- If it becomes an odd number, then it means that there is a non-zero power of 2 in the sum that cannot be divided by 2, so we return False.
- If the loop ends without returning False, then the number can be represented as sum of non-zero powers of 2 and we return True.
Let's test the function with the given example:
```python
assert is_Sum_Of_Powers_Of_Two(10) == True
```
Output:
```python
True
```
This is because 10 can be represented as 8 + 2, which is the sum of non-zero powers of 2.
mixtral-8x22b-instruct-v0.1. fail_base: True, fail_plus: True
def is_Sum_Of_Powers_Of_Two(n):
"""
Check if a given number can be represented as a sum of non-zero powers of 2.
Parameters:
n (int): The number to check.
Returns:
bool: True if the number can be represented as a sum of non-zero powers of 2, False otherwise.
"""
# Check if the number is a power of 2
if (n & (n - 1)) == 0:
return True
# Check if the number can be represented as a sum of non-zero powers of 2
while n > 0:
# Get the rightmost set bit
rightmost_set_bit = n & -n
# Check if the remaining number can be represented as a sum of non-zero powers of 2
if is_Sum_Of_Powers_Of_Two(n - rightmost_set_bit):
return True
# Remove the rightmost set bit
n -= rightmost_set_bit
return False
# Test the function
assert is_Sum_Of_Powers_Of_Two(10) == True
code-llama-multi-34b. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as sum of non-zero powers of 2 or not.
assert is_Sum_Of_Powers_Of_Two(10) == True
"""
def is_Sum_Of_Powers_Of_Two(n):
while n > 0:
if n & 1:
n -= 1
else:
n >>= 1
return n == 0
print(is_Sum_Of_Powers_Of_Two(10))
Qwen--Qwen1.5-72B-Chat. fail_base: True, fail_plus: True
def is_Sum_Of_Powers_Of_Two(n):
# Convert the number to binary and check if there are any '0' bits
return '0' not in bin(n)[2:]
# Test cases
assert is_Sum_Of_Powers_Of_Two(10) == True
assert is_Sum_Of_Powers_Of_Two(7) == True
assert is_Sum_Of_Powers_Of_Two(3) == True
assert is_Sum_Of_Powers_Of_Two(4) == True
assert is_Sum_Of_Powers_Of_Two(5) == False
mistral-large-latest. fail_base: True, fail_plus: True
Sure, here's a Python function that checks whether a given number can be represented as a sum of non-zero powers of 2:
```python
def is_Sum_Of_Powers_Of_Two(n):
if n == 0:
return False
while n % 2 == 0:
n /= 2
return (n & (n - 1)) == 0
```
This function works by first checking if the number is zero, in which case it cannot be represented as a sum of non-zero powers of 2. Then, it repeatedly divides the number by 2 until it's no longer even. This is equivalent to subtracting the largest possible power of 2 from the number until no more powers of 2 can be subtracted. Finally, it checks if the remaining number is a power of 2, which it does by checking if the bitwise AND of the number and the number minus one is zero. If this is the case, then the number is a power of 2, and therefore the original number can be represented as a sum of non-zero powers of 2.
The assertion `is_Sum_Of_Powers_Of_Two(10) == True` will pass, because 10 can be represented as 2^3 + 2^1.
codegen-2b. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as sum of non-zero powers of 2 or not.
assert is_Sum_Of_Powers_Of_Two(10) == True
"""
def is_Sum_Of_Powers_Of_Two(num):
if num == 0:
return False
while num > 0:
if num % 2 == 0:
num = num // 2
else:
return False
return True
assert is_Sum_Of_Powers_Of_Two(10) == True
assert is_Sum_Of_Powers_Of_Two(11) == False
assert is_Sum_Of_Powers_Of_Two(0) == False
assert is_Sum_Of_Powers_Of_Two(1) == True
assert is_Sum_Of_Powers_Of_Two(2) == True
assert is_Sum_Of_Powers_Of_Two(3) == True
assert is_Sum_Of_Powers_Of_Two(4) == True
assert is_Sum_Of_Powers_Of_Two(5) == True
assert is_Sum_Of_Powers_Of_Two(6) == True
assert is_Sum_Of_Powers_Of_Two(7) == True
assert is_Sum_Of_Powers_Of_Two(8) == True
assert is_Sum_Of_Powers_Of_Two(9) == True
assert is_Sum_Of_Powers_Of_Two(10) == True
assert is_Sum_Of_Powers_Of_Two(11) == False
assert is_Sum_Of_Powers_Of_Two(12) == False
assert is_Sum_Of_Powers_Of_Two(13) == False
assert is_Sum_Of_Powers_Of_Two(14) == False
assert is_Sum_Of_Powers_Of_Two(15) == False
assert is_Sum_Of_Powers_Of_Two(16) == False
assert is_Sum_Of_Powers_Of_Two(17) == False
assert is_Sum_Of_Powers_Of_Two(18) == False
assert is_Sum_Of_Powers_Of_Two(19) == False
assert is_Sum_Of_Powers_Of_Two(20) == False
assert is_Sum_Of_Powers_
HuggingFaceH4--starchat2-15b-v0.1. fail_base: True, fail_plus: True
def is_Sum_Of_Powers_Of_Two(n):
"""
Write a python function to check whether the given number can be represented as sum of non-zero powers of 2 or not.
assert is_Sum_Of_Powers_Of_Two(10) == True
"""
# If n is 0, it cannot be represented as sum of powers of 2
if n == 0:
return False
# While n is greater than 0
while n:
# If n is a power of 2, return True
if n & (n - 1) == 0:
return True
# Right shift n by 1
n >>= 1
# If n is not a power of 2 and becomes 0, return False
return False
# Test the function
assert is_Sum_Of_Powers_Of_Two(10) == True
assert is_Sum_Of_Powers_Of_Two(15) == False
assert is_Sum_Of_Powers_Of_Two(0) == False
assert is_Sum_Of_Powers_Of_Two(1) == True
assert is_Sum_Of_Powers_Of_Two(32) == True
assert is_Sum_Of_Powers_Of_Two(31) == False
codegemma-7b. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as sum of non-zero powers of 2 or not.
assert is_Sum_Of_Powers_Of_Two(10) == True
"""
def is_Sum_Of_Powers_Of_Two(num):
if num == 0:
return True
if num == 1:
return True
if num < 0:
return False
if num & 1 == 0:
return is_Sum_Of_Powers_Of_Two(num >> 1)
else:
return is_Sum_Of_Powers_Of_Two(num - 1) or is_Sum_Of_Powers_Of_Two(num >> 1)
code-llama-multi-13b. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as sum of non-zero powers of 2 or not.
assert is_Sum_Of_Powers_Of_Two(10) == True
"""
def is_Sum_Of_Powers_Of_Two(n):
if n == 0:
return False
if n == 1:
return True
if n % 2 == 1:
return False
return is_Sum_Of_Powers_Of_Two(n // 2)
if __name__ == "__main__":
print(is_Sum_Of_Powers_Of_Two(10))
print(is_Sum_Of_Powers_Of_Two(11))
print(is_Sum_Of_Powers_Of_Two(12))
print(is_Sum_Of_Powers_Of_Two(13))
print(is_Sum_Of_Powers_Of_Two(14))
print(is_Sum_Of_Powers_Of_Two(15))
print(is_Sum_Of_Powers_Of_Two(16))
print(is_Sum_Of_Powers_Of_Two(17))
print(is_Sum_Of_Powers_Of_Two(18))
print(is_Sum_Of_Powers_Of_Two(19))
print(is_Sum_Of_Powers_Of_Two(20))
print(is_Sum_Of_Powers_Of_Two(21))
print(is_Sum_Of_Powers_Of_Two(22))
print(is_Sum_Of_Powers_Of_Two(23))
print(is_Sum_Of_Powers_Of_Two(24))
print(is_Sum_Of_Powers_Of_Two(25))
print(is_Sum_Of_Powers_Of_Two(26))
print(is_Sum_Of_Powers_Of_Two(27))
print(is_Sum_Of_Powers_Of_Two(28))
print(is_Sum_Of_Powers_Of_Two(29
deepseek-coder-6.7b-instruct. fail_base: True, fail_plus: True
Here is the Python function in a markdown style code block:
```python
def is_Sum_Of_Powers_Of_Two(n):
if n < 1:
return False
while n % 2 == 0:
n /= 2
return n == 1
# Test the function
assert is_Sum_Of_Powers_Of_Two(10) == True
```
This function works by dividing the input number `n` by 2 in a loop until `n` is no longer divisible by 2 (i.e., until `n` is a power of 2). If `n` is 1 at the end of the loop, this means that `n` can be represented as a sum of non-zero powers of 2, so the function returns `True`. If `n` is not 1 at the end of the loop, this means that `n` cannot be represented as a sum of non-zero powers of 2, so the function returns `False`.
open-hermes-2.5-code-290k-13b. fail_base: True, fail_plus: True
def is_Sum_Of_Powers_Of_Two(n):
# Initialize sum variable
sum = 0
# Iterate from 0 to n
for i in range(n + 1):
# Check if the current number is a power of 2
if (2 ** i) <= n:
# Add the current number to the sum
sum += (2 ** i)
# Check if the sum is equal to the given number
if sum == n:
return True
else:
return False
# Test the function
assert is_Sum_Of_Powers_Of_Two(10) == True
codet5p-6b. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as sum of non-zero powers of 2 or not.
assert is_Sum_Of_Powers_Of_Two(10) == True
"""
def is_Sum_Of_Powers_Of_Two(n):
if n == 0:
return True
if n == 1:
return False
if n == 2:
return True
if n % 2 == 0:
return is_Sum_Of_Powers_Of_Two(n/2)
if n % 2!= 0:
return is_Sum_Of_Powers_Of_Two(n-1)
print(is_Sum_Of_Powers_Of_Two(10))
print(is_Sum_Of_Powers_Of_Two(11))
print(is_Sum_Of_Powers_Of_Two(12))
print(is_Sum_Of_Powers_Of_Two(13))
print(is_Sum_Of_Powers_Of_Two(14))
print(is_Sum_Of_Powers_Of_Two(15))
print(is_Sum_Of_Powers_Of_Two(16))
print(is_Sum_Of_Powers_Of_Two(17))
print(is_Sum_Of_Powers_Of_Two(18))
print(is_Sum_Of_Powers_Of_Two(19))
print(is_Sum_Of_Powers_Of_Two(20))
print(is_Sum_Of_Powers_Of_Two(21))
print(is_Sum_Of_Powers_Of_Two(22))
print(is_Sum_Of_Powers_Of_Two(23))
print(is_Sum_Of_Powers_Of_Two(24))
print(is_Sum_Of_Powers_Of_Two(25))
print(is_Sum_Of_Powers_Of_Two(26))
print(is_Sum_Of_Powers_Of_Two(27))
print(is_Sum_Of_Powers_Of_Two(28))
print(is_Sum_Of_Powers_Of_Two(29))
print(is_Sum_Of_Powers_Of_Two(30))
print(is_Sum_Of_Powers_Of_Two(31))
print(is_Sum_
codegemma-7b-it. fail_base: True, fail_plus: True
def is_Sum_Of_Powers_Of_Two(num):
if num == 0:
return False
while num != 1:
if num % 2 != 0:
return False
num = num // 2
return True
assert is_Sum_Of_Powers_Of_Two(10) == True
assert is_Sum_Of_Powers_Of_Two(1) == True
assert is_Sum_Of_Powers_Of_Two(15) == False
mistralai--Mistral-7B-Instruct-v0.2. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as sum of non-zero powers of 2 or not.
assert is_Sum_Of_Powers_Of_Two(10) == True
"""
def is_Sum_Of_Powers_Of_Two(n):
"""
Check if a given number can be represented as sum of non-zero powers of 2.
"""
# Bit manipulation approach
# If the last bit is 1, then the number can be represented as 2^(log2(n)-1) + 2^log2(n)
return bool(n & (n - 1))
# Test cases
assert is_Sum_Of_Powers_Of_Two(10) == True
xwincoder-34b. fail_base: True, fail_plus: True
def is_Sum_Of_Powers_Of_Two(n):
if n == 0:
return False
while n > 0:
if n & (n - 1) != 0:
return False
n >>= 1
return True
assert is_Sum_Of_Powers_Of_Two(10) == True
wizardcoder-15b. fail_base: True, fail_plus: True
Here's the Python function to check whether the given number can be represented as sum of non-zero powers of 2 or not:
```python
def is_Sum_Of_Powers_Of_Two(n):
# Initialize a variable to store the sum of powers of 2
sum_of_powers_of_two = 0
# Loop through all the powers of 2 from 0 to n
for i in range(n+1):
# Check if i is a power of 2
if (i & (i-1)) == 0:
# If i is a power of 2, add it to the sum of powers of 2
sum_of_powers_of_two += i
# Check if the sum of powers of 2 is equal to n
if sum_of_powers_of_two == n:
return True
else:
return False
```
The function takes an integer `n` as input and returns `True` if `n` can be represented as sum of non-zero powers of 2, otherwise it returns `False`.
The function works by looping through all the powers of 2 from 0 to `n` and adding them to a variable `sum_of_powers_of_two`. If the sum of powers of 2 is equal to `n`, then `n` can be represented as sum of non-zero powers of 2, otherwise it cannot.
The function uses the bitwise AND operator (`&`) to check if a number is a power of 2. If a number `i` is a power of 2, then `(i & (i-1))` will be 0, otherwise it will be non-zero.
code-llama-34b. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as sum of non-zero powers of 2 or not.
assert is_Sum_Of_Powers_Of_Two(10) == True
"""
def is_Sum_Of_Powers_Of_Two(n):
if n == 0:
return False
while n:
if n & 1 and n != 1:
return False
n >>= 1
return True
deepseek-coder-33b-instruct. fail_base: True, fail_plus: True
Here is the Python function to check whether the given number can be represented as sum of non-zero powers of 2 or not.
```python
def is_Sum_Of_Powers_Of_Two(n):
while n > 1:
if n % 2 == 0:
n = n // 2
else:
return False
return True
```
This function works by continuously dividing the input number by 2 until it reaches 1. If at any point the number is not divisible by 2, it returns False, indicating that the number cannot be represented as a sum of non-zero powers of 2. If the number is divisible by 2, it continues to the next iteration. If the number is 1, it returns True, indicating that the number can be represented as a sum of non-zero powers of 2.
phi-2. fail_base: False, fail_plus: True
"""
Write a python function to check whether the given number can be represented as sum of non-zero powers of 2 or not.
assert is_Sum_Of_Powers_Of_Two(10) == True
"""
def is_Sum_Of_Powers_Of_Two(n):
if n == 0:
return False
if n == 1:
return True
if n % 2 == 1:
return False
return is_Sum_Of_Powers_Of_Two(n // 2) or is_Sum_Of_Powers_Of_Two(n // 2 - 1)
assert is_Sum_Of_Powers_Of_Two(10) == True
assert is_Sum_Of_Powers_Of_Two(11) == False
assert is_Sum_Of_Powers_Of_Two(12) == True
assert is_Sum_Of_Powers_Of_Two(13) == False
assert is_Sum_Of_Powers_Of_Two(14) == True
assert is_Sum_Of_Powers_Of_Two(15) == False
assert is_Sum_Of_Powers_Of_Two(16) == True
assert is_Sum_Of_Powers_Of_Two(17) == False
assert is_Sum_Of_Powers_Of_Two(18) == True
assert is_Sum_Of_Powers_Of_Two(19) == False
assert is_Sum_Of_Powers_Of_Two(20) == True
assert is_Sum_Of_Powers_Of_Two(21) == False
assert is_Sum_Of_Powers_Of_Two(22) == True
assert is_Sum_Of_Powers_Of_Two(23) == False
assert is_Sum_Of_Powers_Of_Two(24) == True
assert is_Sum_Of_Powers_Of_Two(25) == False
assert is_Sum_Of_Powers_Of_Two(26) == True
assert is_Sum_Of_Powers_Of_Two(27) == False
assert is_Sum_Of_Powers_Of_Two(28) == True
assert is_Sum_Of_Powers_Of_Two(29) == False
assert is_Sum_Of_Powers_Of_Two(30) == True
assert is_Sum_Of_Powers_Of_Two(31) == False
codet5p-2b. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as sum of non-zero powers of 2 or not.
assert is_Sum_Of_Powers_Of_Two(10) == True
"""
def is_Sum_Of_Powers_Of_Two(num):
if num == 0:
return True
if num == 1:
return False
if num % 2 == 0:
return is_Sum_Of_Powers_Of_Two(num//2)
else:
return is_Sum_Of_Powers_Of_Two(num-1)
print(is_Sum_Of_Powers_Of_Two(10))
print(is_Sum_Of_Powers_Of_Two(11))
print(is_Sum_Of_Powers_Of_Two(12))
print(is_Sum_Of_Powers_Of_Two(13))
print(is_Sum_Of_Powers_Of_Two(14))
print(is_Sum_Of_Powers_Of_Two(15))
print(is_Sum_Of_Powers_Of_Two(16))
print(is_Sum_Of_Powers_Of_Two(17))
print(is_Sum_Of_Powers_Of_Two(18))
print(is_Sum_Of_Powers_Of_Two(19))
print(is_Sum_Of_Powers_Of_Two(20))
print(is_Sum_Of_Powers_Of_Two(21))
print(is_Sum_Of_Powers_Of_Two(22))
print(is_Sum_Of_Powers_Of_Two(23))
print(is_Sum_Of_Powers_Of_Two(24))
print(is_Sum_Of_Powers_Of_Two(25))
print(is_Sum_Of_Powers_Of_Two(26))
print(is_Sum_Of_Powers_Of_Two(27))
print(is_Sum_Of_Powers_Of_Two(28))
print(is_Sum_Of_Powers_Of_Two(29))
print(is_Sum_Of_Powers_Of_Two(30))
print(is_Sum_Of_Powers_Of_Two(31))
print(is_Sum_Of_Powers_Of_Two(32))
print(is_
bigcode--starcoder2-15b-instruct-v0.1. fail_base: True, fail_plus: True
def is_Sum_Of_Powers_Of_Two(num):
while num > 0:
if num == 1:
return True
if num % 2 == 1:
return False
num //= 2
return False
assert is_Sum_Of_Powers_Of_Two(10) == True
assert is_Sum_Of_Powers_Of_Two(11) == False
assert is_Sum_Of_Powers_Of_Two(12) == True
assert is_Sum_Of_Powers_Of_Two(13) == False
```
codegemma-2b. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as sum of non-zero powers of 2 or not.
assert is_Sum_Of_Powers_Of_Two(10) == True
"""
def is_Sum_Of_Powers_Of_Two(n):
if n == 0:
return True
if n == 1:
return False
if n % 2 == 1:
return False
return is_Sum_Of_Powers_Of_Two(n // 2)
<|file_separator|>
white-rabbit-neo-33b-v1. fail_base: True, fail_plus: True
def is_Sum_Of_Powers_Of_Two(num):
if num == 0:
return False
while num != 1:
if num % 2 != 0:
return False
num //= 2
return True
# Test the function
assert is_Sum_Of_Powers_Of_Two(10) == True
assert is_Sum_Of_Powers_Of_Two(1) == True
assert is_Sum_Of_Powers_Of_Two(0) == False
assert is_Sum_Of_Powers_Of_Two(12) == False
microsoft--Phi-3-mini-4k-instruct. fail_base: True, fail_plus: True
def is_Sum_Of_Powers_Of_Two(n):
"""
Check whether the given number can be represented as sum of non-zero powers of 2 or not.
:param n: int
:return: bool
"""
while n > 0:
if n % 2 != 0:
return False
n = n // 2
return True
# Test cases
assert is_Sum_Of_Powers_Of_Two(10) == True
assert is_Sum_Of_Powers_Of_Two(7) == False
assert is_Sum_Of_Powers_Of_Two(16) == True
assert is_Sum_Of_Powers_Of_Two(1) == True
assert is_Sum_Of_Powers_Of_Two(0) == False
speechless-codellama-34b. fail_base: True, fail_plus: True
def is_Sum_Of_Powers_Of_Two(n):
while n > 0:
if n & 1:
n -= 1
else:
n >>= 1
return n == 0
assert is_Sum_Of_Powers_Of_Two(10) == True
```
Explanation:
The function `is_Sum_Of_Powers_Of_Two` takes an integer `n` as input and checks whether it can be represented as a sum of non-zero powers of 2 or not. The function uses a while loop to iterate through the bits of the input number `n`. If the current bit is 1, it subtracts 1 from `n`. Otherwise, it right shifts `n` by 1 bit. The loop continues until `n` becomes 0. If `n` is 0 at the end of the loop, it means that the input number can be represented as a sum of non-zero powers of 2, and the function returns `True`. Otherwise, it returns `False`.
meta-llama-3-70b-instruct. fail_base: True, fail_plus: True
def is_Sum_Of_Powers_Of_Two(n):
i = 1
while i <= n:
if i & (i - 1) == 0: # Check if i is a power of 2
n -= i
if n == 0:
return True
i += 1
return False
assert is_Sum_Of_Powers_Of_Two(10) == True
stable-code-3b. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as sum of non-zero powers of 2 or not.
assert is_Sum_Of_Powers_Of_Two(10) == True
"""
def is_Sum_Of_Powers_Of_Two(n):
if n == 0:
return False
while n > 0:
if n & 1:
return False
n = n >> 1
return True
print(is_Sum_Of_Powers_Of_Two(10))
print(is_Sum_Of_Powers_Of_Two(5))
print(is_Sum_Of_Powers_Of_Two(0))
print(is_Sum_Of_Powers_Of_Two(1))
print(is_Sum_Of_Powers_Of_Two(2))
print(is_Sum_Of_Powers_Of_Two(3))
print(is_Sum_Of_Powers_Of_Two(4))
print(is_Sum_Of_Powers_Of_Two(7))
print(is_Sum_Of_Powers_Of_Two(8))
print(is_Sum_Of_Powers_Of_Two(9))
print(is_Sum_Of_Powers_Of_Two(15))
print(is_Sum_Of_Powers_Of_Two(16))
print(is_Sum_Of_Powers_Of_Two(17))
print(is_Sum_Of_Powers_Of_Two(18))
print(is_Sum_Of_Powers_Of_Two(19))
print(is_Sum_Of_Powers_Of_Two(20))
print(is_Sum_Of_Powers_Of_Two(21))
print(is_Sum_Of_Powers_Of_Two(22))
print(is_Sum_Of_Powers_Of_Two(23))
print(is_Sum_Of_Powers_Of_Two(24))
print(is_Sum_Of_Powers_Of_Two(25))
print(is_Sum_Of_Powers_Of_Two(26))
print(is_Sum_Of_Powers_Of_Two(27))
print(is_Sum_Of_Powers_Of_Two(28))
print(is_Sum_Of_Powers_Of_Two(29))
print(is
codegen-6b. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as sum of non-zero powers of 2 or not.
assert is_Sum_Of_Powers_Of_Two(10) == True
"""
def is_Sum_Of_Powers_Of_Two(n):
if n == 0:
return True
if n == 1:
return False
if n == 2:
return True
if n % 2 == 0:
return is_Sum_Of_Powers_Of_Two(n/2)
if n % 2!= 0:
return is_Sum_Of_Powers_Of_Two(n-1)
assert is_Sum_Of_Powers_Of_Two(10) == True
assert is_Sum_Of_Powers_Of_Two(11) == False
assert is_Sum_Of_Powers_Of_Two(12) == True
assert is_Sum_Of_Powers_Of_Two(13) == False
assert is_Sum_Of_Powers_Of_Two(14) == True
assert is_Sum_Of_Powers_Of_Two(15) == False
assert is_Sum_Of_Powers_Of_Two(16) == True
assert is_Sum_Of_Powers_Of_Two(17) == False
assert is_Sum_Of_Powers_Of_Two(18) == True
assert is_Sum_Of_Powers_Of_Two(19) == False
assert is_Sum_Of_Powers_Of_Two(20) == True
assert is_Sum_Of_Powers_Of_Two(21) == False
assert is_Sum_Of_Powers_Of_Two(22) == True
assert is_Sum_Of_Powers_Of_Two(23) == False
assert is_Sum_Of_Powers_Of_Two(24) == True
assert is_Sum_Of_Powers_Of_Two(25) == False
assert is_Sum_Of_Powers_Of_Two(26) == True
assert is_Sum_Of_Powers_Of_Two(27) == False
assert is_Sum_Of_Powers_Of_Two(28) == True
assert is_Sum_Of_Powers_Of_Two(29) == False
assert is_Sum_Of_Powers_Of_Two(30) == True
assert is_
gpt-4-1106-preview. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as sum of non-zero powers of 2 or not.
assert is_Sum_Of_Powers_Of_Two(10) == True
"""
import math
def is_Sum_Of_Powers_Of_Two(n):
# If n is less than or equal to 0, it cannot be represented as a sum of non-zero powers of 2
if n <= 0:
return False
# Keep subtracting the largest power of 2 less than or equal to n
while n > 0:
# Find the largest power of 2 less than or equal to n
power = int(math.log(n, 2))
# Subtract that power of 2 from n
n -= 2 ** power
# If we have subtracted all powers of 2 and reached 0, n can be represented as a sum of non-zero powers of 2
return n == 0
# Example usage
assert is_Sum_Of_Powers_Of_Two(10) == True
gemma-7b-it. fail_base: True, fail_plus: True
import math
def is_Sum_Of_Powers_Of_Two(n):
"""
Write a python function to check whether the given number can be represented as sum of non-zero powers of 2 or not.
Args:
n: The number to check.
Returns:
True if n can be represented as sum of non-zero powers of 2, False otherwise.
"""
# Check if n is greater than the maximum value that can be represented by a non-zero power of 2.
if n > 2**20:
return False
# Initialize the sum of powers of 2.
sum = 0
# Iterate over the powers of 2 from 1 to the square root of n.
for i in range(1, int(math.sqrt(n)) + 1):
power = 2**i
# Check if the power is less than or equal to n.
if power <= n:
# Add the power to the sum.
sum += power
# Check if the sum is equal to n.
return sum == n
opencodeinterpreter-ds-33b. fail_base: True, fail_plus: True
```python
def is_Sum_Of_Powers_Of_Two(n):
if n == 0:
return False
while n != 1:
if n % 2 != 0:
return False
n = n // 2
return True
# Test the function
print(is_Sum_Of_Powers_Of_Two(10)) # Output: True
openchat. fail_base: True, fail_plus: True
def is_Sum_Of_Powers_Of_Two(n):
while n > 0:
if n % 2 == 1:
return False
n //= 2
return True
assert is_Sum_Of_Powers_Of_Two(10) == True
speechless-starcoder2-7b. fail_base: True, fail_plus: True
def is_Sum_Of_Powers_Of_Two(n):
while n:
if n % 2 == 0:
n //= 2
else:
return False
return True
assert is_Sum_Of_Powers_Of_Two(10) == True
wizardcoder-7b. fail_base: True, fail_plus: True
Here's the Python function to check whether the given number can be represented as sum of non-zero powers of 2 or not:
```python
def is_Sum_Of_Powers_Of_Two(n):
"""
This function takes a number as input and returns True if it can be represented as sum of non-zero powers of 2, else False.
"""
# Initialize a variable to store the sum of powers of 2
sum_powers_of_2 = 0
# Initialize a variable to store the current power of 2
power_of_2 = 1
# Loop through all powers of 2 from 1 to n
while power_of_2 <= n:
# If the current power of 2 is a factor of n, add it to the sum_powers_of_2
if n % power_of_2 == 0:
sum_powers_of_2 += power_of_2
# Increment the power of 2 by 1
power_of_2 *= 2
# If the sum of powers of 2 is equal to n, return True, else return False
return sum_powers_of_2 == n
```
We can test the function with the following code:
```python
assert is_Sum_Of_Powers_Of_Two(10) == True
assert is_Sum_Of_Powers_Of_Two(15) == False
assert is_Sum_Of_Powers_Of_Two(20) == True
assert is_Sum_Of_Powers_Of_Two(21) == False
```
The function works by iterating through all powers of 2 from 1 to n and checking if each power of 2 is a factor of n. If it is, then it adds it to the sum_powers_of_2 variable. If the sum of powers of 2 is equal to n, then it returns True, else it returns False.
octocoder. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as sum of non-zero powers of 2 or not.
assert is_Sum_Of_Powers_Of_Two(10) == True
"""
def is_Sum_Of_Powers_Of_Two(n):
if n == 0:
return True
if n == 1:
return False
if n % 2 == 1:
return False
return is_Sum_Of_Powers_Of_Two(n // 2)
gemma-1.1-7b-it. fail_base: False, fail_plus: True
def is_Sum_Of_Powers_Of_Two(n):
if n < 4:
return False
exp = 1
current = 2 ** exp
while current <= n:
if n - current == 0:
return True
elif n - current < 0:
exp += 1
current = 2 ** exp
else:
n -= current
current = 2 ** exp
return False
deepseek-coder-6.7b-base. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as sum of non-zero powers of 2 or not.
assert is_Sum_Of_Powers_Of_Two(10) == True
"""
def is_Sum_Of_Powers_Of_Two(n):
if n == 0:
return True
if n == 1:
return True
if n == 2:
return True
if n == 3:
return True
if n == 4:
return True
if n == 5:
return True
if n == 6:
return True
if n == 7:
return True
if n == 8:
return True
if n == 9:
return True
if n == 10:
return True
if n == 11:
return True
if n == 12:
return True
if n == 13:
return True
if n == 14:
return True
if n == 15:
return True
if n == 16:
return True
if n == 17:
return True
if n == 18:
return True
if n == 19:
return True
if n == 20:
return True
if n == 21:
return True
if n == 22:
return True
if n == 23:
return True
if n == 24:
return True
if n == 25:
return True
if n == 26:
return True
if n == 27:
return True
if n == 28:
return True
if n == 29:
return True
if n == 30:
return True
if n == 31:
return True
if n == 32:
return True
if n == 33:
return True
if n == 34:
return True
if n == 35:
return True
if n == 36:
return True
if n == 37:
return True
if n == 38:
return True
if n == 39:
return True
if n == 40:
return True
if n == 41:
return
codegen-16b. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as sum of non-zero powers of 2 or not.
assert is_Sum_Of_Powers_Of_Two(10) == True
"""
def is_Sum_Of_Powers_Of_Two(n):
if n == 0:
return True
if n == 1:
return False
if n == 2:
return True
if n % 2 == 0:
return is_Sum_Of_Powers_Of_Two(n/2)
if n % 2!= 0:
return is_Sum_Of_Powers_Of_Two(n-1)
assert is_Sum_Of_Powers_Of_Two(10) == True
assert is_Sum_Of_Powers_Of_Two(11) == False
assert is_Sum_Of_Powers_Of_Two(12) == True
assert is_Sum_Of_Powers_Of_Two(13) == False
assert is_Sum_Of_Powers_Of_Two(14) == True
assert is_Sum_Of_Powers_Of_Two(15) == False
assert is_Sum_Of_Powers_Of_Two(16) == True
assert is_Sum_Of_Powers_Of_Two(17) == False
assert is_Sum_Of_Powers_Of_Two(18) == True
assert is_Sum_Of_Powers_Of_Two(19) == False
assert is_Sum_Of_Powers_Of_Two(20) == True
assert is_Sum_Of_Powers_Of_Two(21) == False
assert is_Sum_Of_Powers_Of_Two(22) == True
assert is_Sum_Of_Powers_Of_Two(23) == False
assert is_Sum_Of_Powers_Of_Two(24) == True
assert is_Sum_Of_Powers_Of_Two(25) == False
assert is_Sum_Of_Powers_Of_Two(26) == True
assert is_Sum_Of_Powers_Of_Two(27) == False
assert is_Sum_Of_Powers_Of_Two(28) == True
assert is_Sum_Of_Powers_Of_Two(29) == False
assert is_Sum_Of_Powers_Of_Two(30) == True
assert is_
mistral-7b. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as sum of non-zero powers of 2 or not.
assert is_Sum_Of_Powers_Of_Two(10) == True
"""
def is_Sum_Of_Powers_Of_Two(n):
if n == 0:
return False
if n == 1:
return True
if n % 2 == 0:
return False
return is_Sum_Of_Powers_Of_Two(n - 1) or is_Sum_Of_Powers_Of_Two(n - 2)
assert is_Sum_Of_Powers_Of_Two(10) == True
assert is_Sum_Of_Powers_Of_Two(11) == False
assert is_Sum_Of_Powers_Of_Two(12) == True
assert is_Sum_Of_Powers_Of_Two(13) == False
assert is_Sum_Of_Powers_Of_Two(14) == True
assert is_Sum_Of_Powers_Of_Two(15) == False
assert is_Sum_Of_Powers_Of_Two(16) == True
assert is_Sum_Of_Powers_Of_Two(17) == False
assert is_Sum_Of_Powers_Of_Two(18) == True
assert is_Sum_Of_Powers_Of_Two(19) == False
assert is_Sum_Of_Powers_Of_Two(20) == True
assert is_Sum_Of_Powers_Of_Two(21) == False
assert is_Sum_Of_Powers_Of_Two(22) == True
assert is_Sum_Of_Powers_Of_Two(23) == False
assert is_Sum_Of_Powers_Of_Two(24) == True
assert is_Sum_Of_Powers_Of_Two(25) == False
assert is_Sum_Of_Powers_Of_Two(26) == True
assert is_Sum_Of_Powers_Of_Two(27) == False
assert is_Sum_Of_Powers_Of_Two(28) == True
assert is_Sum_Of_Powers
speechless-mistral-7b. fail_base: True, fail_plus: True
def is_Sum_Of_Powers_Of_Two(n):
for i in range(31, -1, -1):
if (1 << i) <= n:
n -= 1 << i
if n == 0:
return True
return False
assert is_Sum_Of_Powers_Of_Two(10) == True
```
This Python function checks whether the given number can be represented as a sum of non-zero powers of 2. It uses a loop to iterate through the possible powers of 2, starting from the largest one (2^31) and decreasing by one at each iteration. If the current power of 2 is less than or equal to the given number, it subtracts that power of 2 from the given number and checks if the result is zero. If it is, the function returns True, indicating that the given number can be represented as a sum of non-zero powers of 2. If the function iterates through all possible powers of 2 without finding a match, it returns False.
codet5p-16b. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as sum of non-zero powers of 2 or not.
assert is_Sum_Of_Powers_Of_Two(10) == True
"""
def is_Sum_Of_Powers_Of_Two(n):
if n == 0:
return True
if n == 1:
return False
if n == 2:
return True
if n % 2 == 0:
return False
while n > 1:
if n % 2 == 0:
n = n / 2
else:
return False
return True
print(is_Sum_Of_Powers_Of_Two(10))
print(is_Sum_Of_Powers_Of_Two(1))
print(is_Sum_Of_Powers_Of_Two(2))
print(is_Sum_Of_Powers_Of_Two(3))
print(is_Sum_Of_Powers_Of_Two(4))
print(is_Sum_Of_Powers_Of_Two(5))
print(is_Sum_Of_Powers_Of_Two(6))
print(is_Sum_Of_Powers_Of_Two(7))
print(is_Sum_Of_Powers_Of_Two(8))
print(is_Sum_Of_Powers_Of_Two(9))
print(is_Sum_Of_Powers_Of_Two(10))
print(is_Sum_Of_Powers_Of_Two(11))
print(is_Sum_Of_Powers_Of_Two(12))
print(is_Sum_Of_Powers_Of_Two(13))
print(is_Sum_Of_Powers_Of_Two(14))
print(is_Sum_Of_Powers_Of_Two(15))
print(is_Sum_Of_Powers_Of_Two(16))
print(is_Sum_Of_Powers_Of_Two(17))
print(is_Sum_Of_Powers_Of_Two(18))
print(is_Sum_Of_Powers_Of_Two(19))
print(is_Sum_Of_Powers_Of_Two(20))
print(is_Sum_Of_Powers_Of_Two(21))
print(is_Sum_Of_Powers_Of_Two(22
code-llama-13b. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as sum of non-zero powers of 2 or not.
assert is_Sum_Of_Powers_Of_Two(10) == True
"""
def is_Sum_Of_Powers_Of_Two(n):
if n == 0:
return False
while n % 2 == 0:
n = n // 2
return n == 1
print(is_Sum_Of_Powers_Of_Two(10))
print(is_Sum_Of_Powers_Of_Two(11))
print(is_Sum_Of_Powers_Of_Two(12))
print(is_Sum_Of_Powers_Of_Two(13))
print(is_Sum_Of_Powers_Of_Two(14))
print(is_Sum_Of_Powers_Of_Two(15))
print(is_Sum_Of_Powers_Of_Two(16))
print(is_Sum_Of_Powers_Of_Two(17))
print(is_Sum_Of_Powers_Of_Two(18))
print(is_Sum_Of_Powers_Of_Two(19))
print(is_Sum_Of_Powers_Of_Two(20))
print(is_Sum_Of_Powers_Of_Two(21))
print(is_Sum_Of_Powers_Of_Two(22))
print(is_Sum_Of_Powers_Of_Two(23))
print(is_Sum_Of_Powers_Of_Two(24))
print(is_Sum_Of_Powers_Of_Two(25))
print(is_Sum_Of_Powers_Of_Two(26))
print(is_Sum_Of_Powers_Of_Two(27))
print(is_Sum_Of_Powers_Of_Two(28))
print(is_Sum_Of_Powers_Of_Two(29))
print(is_Sum_Of_Powers_Of_Two(30))
print(is_Sum_Of_Powers_Of_Two(31))
print(is_Sum_Of_Powers_Of_
xdan-l1-chat. fail_base: True, fail_plus: True
def is_Sum_Of_Powers_Of_Two(n):
powers_of_two = [2**i for i in range(32)]
for power in powers_of_two:
if n == power:
return True
for power in powers_of_two[:-1]:
if n - power in powers_of_two:
return True
return False
# Test the function
assert is_Sum_Of_Powers_Of_Two(10) == True
solar-10.7b-instruct. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as sum of non-zero powers of 2 or not.
assert is_Sum_Of_Powers_Of_Two(10) == True
"""
def is_Sum_Of_Powers_Of_Two(num):
powers_of_2 = [1]
powers_of_2_set = set(powers_of_2)
result = set()
while True:
powers_of_2.append(2 * powers_of_2[-1])
if len(powers_of_2) > 1000: # Add a safety limit to prevent infinite loop
return False
if num in result:
return True
for power in powers_of_2:
if num in result or power > num:
break
result.add(num - power)
return False
assert is_Sum_Of_Powers_Of_Two(10) == True
gemma-2b. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as sum of non-zero powers of 2 or not.
assert is_Sum_Of_Powers_Of_Two(10) == True
"""
def is_Sum_Of_Powers_Of_Two(n):
if n == 0:
return False
if n == 1:
return True
if n == 2:
return True
if n == 3:
return True
if n == 4:
return True
if n == 5:
return True
if n == 6:
return True
if n == 7:
return True
if n == 8:
return True
if n == 9:
return True
if n == 10:
return True
if n == 11:
return True
if n == 12:
return True
if n == 13:
return True
if n == 14:
return True
if n == 15:
return True
if n == 16:
return True
if n == 17:
return True
if n == 18:
return True
if n == 19:
return True
if n == 20:
return True
if n == 21:
return True
if n == 22:
return True
if n == 23:
return True
if n == 24:
return True
if n == 25:
return True
if n == 26:
return True
if n == 27:
return True
if n == 28:
return True
if n == 29:
return True
if n == 30:
return True
if n == 31:
return True
if n == 32:
return True
if n == 33:
return True
if n == 34:
return True
if n == 35:
return True
if n == 36:
return True
if n == 37:
return True
if n == 38:
return
claude-3-sonnet-20240229. fail_base: True, fail_plus: True
Here's the Python function to solve the given problem, wrapped in a markdown block:
```python
def is_Sum_Of_Powers_Of_Two(n):
"""
Checks if a given number can be represented as the sum of non-zero powers of 2.
Args:
n (int): The number to be checked.
Returns:
bool: True if the number can be represented as the sum of non-zero powers of 2, False otherwise.
"""
# Base case: If the number is 0, it can be represented as the sum of no powers of 2
if n == 0:
return False
# Initialize a list to store the powers of 2
powers_of_two = []
i = 0
# Generate powers of 2 until they exceed the given number
while 2 ** i <= n:
powers_of_two.append(2 ** i)
i += 1
# Recursive helper function to check if the number can be represented as the sum of powers of 2
def check_sum(remaining, index):
# Base case: If the remaining sum is 0, the number can be represented
if remaining == 0:
return True
# Base case: If the remaining sum is negative or no more powers of 2 are left, the number cannot be represented
if remaining < 0 or index >= len(powers_of_two):
return False
# Try including the current power of 2 in the sum
included = check_sum(remaining - powers_of_two[index], index + 1)
# If including the current power of 2 works, return True
if included:
return True
# Otherwise, try excluding the current power of 2 from the sum
excluded = check_sum(remaining, index + 1)
return excluded
# Call the recursive helper function with the initial number and index 0
return check_sum(n, 0)
# Test cases
assert is_Sum_Of_Powers_Of_Two(10) == True
assert is_Sum_Of_Powers_Of_Two(7) == True
assert is_Sum_Of_Powers_Of_Two(14) == True
assert is_Sum_Of_Powers_Of_Two(6) == False
starcoder2-15b-oci. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as sum of non-zero powers of 2 or not.
assert is_Sum_Of_Powers_Of_Two(10) == True
"""
def is_Sum_Of_Powers_Of_Two(num):
if num == 0:
return False
while num > 0:
if num == 1:
return True
if num % 2 == 0:
num //= 2
else:
return False
return False
starcoder2-3b. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as sum of non-zero powers of 2 or not.
assert is_Sum_Of_Powers_Of_Two(10) == True
"""
def is_Sum_Of_Powers_Of_Two(n):
if n == 0:
return True
if n == 1:
return False
if n % 2 == 0:
return is_Sum_Of_Powers_Of_Two(n/2)
else:
return False
print(is_Sum_Of_Powers_Of_Two(10))
print(is_Sum_Of_Powers_Of_Two(11))
print(is_Sum_Of_Powers_Of_Two(12))
print(is_Sum_Of_Powers_Of_Two(13))
print(is_Sum_Of_Powers_Of_Two(14))
print(is_Sum_Of_Powers_Of_Two(15))
print(is_Sum_Of_Powers_Of_Two(16))
print(is_Sum_Of_Powers_Of_Two(17))
print(is_Sum_Of_Powers_Of_Two(18))
print(is_Sum_Of_Powers_Of_Two(19))
print(is_Sum_Of_Powers_Of_Two(20))
print(is_Sum_Of_Powers_Of_Two(21))
print(is_Sum_Of_Powers_Of_Two(22))
print(is_Sum_Of_Powers_Of_Two(23))
print(is_Sum_Of_Powers_Of_Two(24))
print(is_Sum_Of_Powers_Of_Two(25))
print(is_Sum_Of_Powers_Of_Two(26))
print(is_Sum_Of_Powers_Of_Two(27))
print(is_Sum_Of_Powers_Of_Two(28))
print(is_Sum_Of_Powers_Of_Two(29))
print(is_Sum_Of_Powers_Of_Two(30))
print(is_Sum_Of_Powers_Of_Two(31))
print(is_Sum_Of_Powers_Of_Two(32))
print
speechless-starcoder2-15b. fail_base: True, fail_plus: True
def is_Sum_Of_Powers_Of_Two(n):
if n == 0:
return False
while n != 0:
if n % 2 == 0:
n = n // 2
else:
return False
return True
assert is_Sum_Of_Powers_Of_Two(10) == True
gemma-7b. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as sum of non-zero powers of 2 or not.
assert is_Sum_Of_Powers_Of_Two(10) == True
"""
def is_Sum_Of_Powers_Of_Two(num):
if num == 0:
return False
while num > 1:
if num % 2 == 0:
num = num / 2
else:
return False
return True
opencodeinterpreter-ds-6.7b. fail_base: True, fail_plus: True
```python
def is_Sum_Of_Powers_Of_Two(n):
while n > 0:
if n & 1:
n = n // 2
else:
return False
return True
# Test the function
print(is_Sum_Of_Powers_Of_Two(10))