Mbpp/244

 """
Write a python function to find the next perfect square greater than a given number.
assert next_Perfect_Square(35) == 36
"""
 

solution

 
import math  
def next_Perfect_Square(N): 
    if N < 0:
        return 0
    nextN = math.floor(math.sqrt(N)) + 1
    return nextN * nextN 
 

base input

 [[35], [6], [9]] 

plus input

 [[-5], [3.14], [0], [1], [-10], [2.0], [1000000], [99999999], [1000000000000], [3.7831588542515604], [5.302859454099729], [True], [2.4682613401002937], [99999998], [1.3453957712310967], [1.0399013203829814], [99999997], [5.684417641308899], [99999996], [4.510369394904734], [3.6621080850729113], [3.322051512362575], [1000000000001], [-11], [2.3742619906307163], [2.6748360710113177], [3.4473095447178936], [5.57812470410088], [99999995], [4.647261498089122], [1.5329222521720727], [2.6809843384176872], [-1], [False], [1.5107938841218733], [0.875196021901653], [4.529854518921115], [1.7032459621984142], [1.8504217376600358], [2.188160542701604], [1.8956297256654226], [2.4314765544566113], [5.813827850518426], [2.3809692137960456], [2.446463005958287], [1.9423279622572451], [2.1946783538521406], [2.6687036689581713], [2.0326735919423498], [100000000], [2.468678626532637], [1000001], [2.5238311325906344], [1.7822986116186494], [2.3311279543074095], [-22.844596598850202], [2.5605349010057803], [6.083079662936755], [100000001], [1.5746458078326158], [6.588039035035163], [3.1483586672721007], [1000000000002], [3.456020835359328], [34.43923911097559], [1.0089233418138062], [4.2295065796525115], [-78.55181920500208], [1.0803737520419845], [2.605728433563439], [38.98925404921724], [4.4174458158812255], [1.644335866314361], [1.8218151507901879], [3.037371820443729], [2.709277112928487], [4.378962886905937], [34.821872058003486], [-77.542809657578], [2.5759758416813416], [-12], [3.1543786398736704], [0.7865023181429288], [3.2249050005349247], [0.9910005166913101], [3.195728446958819], [1.614635244145928], [2.192134061504989], [-9], [3.47933130145955], [3.806186148917977], [1.4663753283678982], [0.945455886591849], [2.805849529482408], [-6], [1.909977828399661], [2.3945594411492657], [2.943996722081795], [4.945353788299947], [-80], [2.847513147814003], [2.040611668519119], [2.6516104349052276], [3.547091908942516], [999999999999], [-21.849993780773154], [2.09983974207191], [2.7416667760599114], [2.953394448977245]] 

Generations

code-llama-multi-7b. fail_base: True, fail_plus: True

  """
Write a python function to find the next perfect square greater than a given number.
assert next_Perfect_Square(35) == 36
"""


def next_Perfect_Square(n):
    """
    :param n: int
    :return: int
    """
    if n < 0:
        raise ValueError("n must be a positive integer")
    if n == 0:
        return 1
    if n == 1:
        return 1
    if n == 2:
        return 4
    if n == 3:
        return 9
    if n == 4:
        return 9
    if n == 5:
        return 16
    if n == 6:
        return 16
    if n == 7:
        return 25
    if n == 8:
        return 25
    if n == 9:
        return 36
    if n == 10:
        return 36
    if n == 11:
        return 49
    if n == 12:
        return 49
    if n == 13:
        return 64
    if n == 14:
        return 64
    if n == 15:
        return 81
    if n == 16:
        return 81
    if n == 17:
        return 100
    if n == 18:
        return 100
    if n == 19:
        return 121
    if n == 20:
        return 121
    if n == 21:
        return 144
    if n == 22:
        return 144
    if n == 23:
        return 169
    if n == 24:
        return 169
    if n == 25:
        return 196
    if n == 26:
        return 196
    if n == 27:
        return 225
    if n == 28:
        return 225
    if n == 29:
        return 256
    if n == 30:
       

databricks--dbrx-instruct. fail_base: False, fail_plus: True

  def next_Perfect_Square(n):
    """
    Find the next perfect square greater than a given number.
    """
    return (int(n**0.5) + 1)**2

# Test the function
assert next_Perfect_Square(35) == 36

CohereForAI--c4ai-command-r-plus. fail_base: True, fail_plus: True

  def next_Perfect_Square(n):
    import math

    root = math.sqrt(n)
    if int(root + 0.5) ** 2 == n:
        return (int(root) + 1) ** 2
    else:
        return (int(root) + 2) ** 2
```

claude-3-haiku-20240307. fail_base: False, fail_plus: True

  Here's the solution wrapped in a Python markdown block:

```python
def next_Perfect_Square(num):
    """
    Finds the next perfect square greater than a given number.
    
    Args:
        num (int): The number to find the next perfect square for.
    
    Returns:
        int: The next perfect square greater than the given number.
    """
    import math
    
    # Find the square root of the given number
    sqrt = math.sqrt(num)
    
    # If the square root is an integer, the number is already a perfect square
    if sqrt.is_integer():
        return int(sqrt + 1) ** 2
    
    # Otherwise, return the next perfect square
    return int(sqrt) ** 2 + 2 * int(sqrt) + 1

# Test the function
assert next_Perfect_Square(35) == 36

code-millenials-34b. fail_base: True, fail_plus: True

  def next_Perfect_Square(n):
    # Find the next perfect square
    while True:
        n += 1
        if n % 2 == 0:
            continue
        for i in range(3, int(n ** 0.5) + 1, 2):
            if n % i == 0:
                break
        else:
            return n

# Test the function
assert next_Perfect_Square(35) == 36

dolphin-2.6. fail_base: False, fail_plus: True

  """
Write a python function to find the next perfect square greater than a given number.
assert next_Perfect_Square(35) == 36
"""
def next_Perfect_Square(n):
    # Calculate the square root of the given number
    root = int(n ** 0.5)
    # Check if the square root is a perfect square
    if root * root == n:
        # If it is, return the next perfect square
        return (root + 1) ** 2
    else:
        # If it is not, return the square of the next integer
        return (root + 1) ** 2

# Test the function
assert next_Perfect_Square(35) == 36

claude-3-opus-20240229. fail_base: False, fail_plus: True

  Here's the Python code to find the next perfect square greater than a given number, wrapped in a Python markdown block:

```python
"""
Write a python function to find the next perfect square greater than a given number.
assert next_Perfect_Square(35) == 36
"""

import math

def next_Perfect_Square(num):
    sqrt = math.sqrt(num)
    if sqrt.is_integer():
        return int((sqrt + 1) ** 2)
    else:
        return int(math.ceil(sqrt) ** 2)

assert next_Perfect_Square(35) == 36

mixtral-8x7b-instruct. fail_base: True, fail_plus: True

  def next_Perfect_Square(n):
    # Calculate the square root of the given number
    sqrt_n = n ** 0.5

    # Round up to the nearest integer
    next_sqrt = int(sqrt_n) + int(sqrt_n % 1 != 0)

    # Return the next perfect square
    return next_sqrt ** 2

# Test the function
assert next_Perfect_Square(35) == 36

wizardcoder-34b. fail_base: False, fail_plus: True

  Here's the Python function to find the next perfect square greater than a given number:


```python
def next_Perfect_Square(num):
    """
    This function takes a number as input and returns the next perfect square greater than the number.
    """
    root = int(num ** 0.5) + 1
    return (root ** 2)
```

Explanation:

- We first find the square root of the given number using the `**` operator and then add 1 to it to get the next integer greater than the square root.
- We then square this integer to get the next perfect square greater than the given number.


Let's test the function with the given example:

```python
print(next_Perfect_Square(35)) # Output: 36
```

The output is `36` which is the next perfect square greater than `35`. 

mixtral-8x22b-instruct-v0.1. fail_base: True, fail_plus: True

  import math

def next_perfect_square(n):
    """
    Function to find the next perfect square greater than a given number.
    """
    # Calculate the square root of the given number
    root = math.isqrt(n)

    # If the square of the root is equal to the given number,
    # then the next perfect square is the square of the root plus one
    if root**2 == n:
        return (root + 1)**2
    # Otherwise, the next perfect square is the square of the root plus one
    else:
        return (root + 1)**2

# Test the function
assert next_perfect_square(35) == 36

code-llama-multi-34b. fail_base: True, fail_plus: True

  """
Write a python function to find the next perfect square greater than a given number.
assert next_Perfect_Square(35) == 36
"""

def next_Perfect_Square(num):
    return (num // 32 + 1) * 32


if __name__ == "__main__":
    print(next_Perfect_Square(35))

Qwen--Qwen1.5-72B-Chat. fail_base: False, fail_plus: True

  import math

def next_Perfect_Square(n):
    next_square_root = math.isqrt(n) + 1
    return next_square_root ** 2

# Test case provided
assert next_Perfect_Square(35) == 36
# Additional test cases
assert next_Perfect_Square(100) == 121
assert next_Perfect_Square(0) == 1
assert next_Perfect_Square(9999) == 10000

mistral-large-latest. fail_base: False, fail_plus: True

  Sure, here is a Python function that solves the problem:

```python
import math

def next_Perfect_Square(num):
    root = math.isqrt(num)
    if root*root == num:
        return (root+1)**2
    else:
        return (math.isqrt(num)+1)**2

# Test the function
assert next_Perfect_Square(35) == 36
```

This function works by first finding the integer square root of the input number using the `math.isqrt()` function. If the square of the root is equal to the input number, it means the number is a perfect square, so the next perfect square is (root+1)**2. If the number is not a perfect square, the next perfect square is still (root+1)**2, because the root is the largest integer less than or equal to the square root of the number.

codegen-2b. fail_base: True, fail_plus: True

  """
Write a python function to find the next perfect square greater than a given number.
assert next_Perfect_Square(35) == 36
"""

def next_Perfect_Square(n):
    if n == 1:
        return 1
    if n == 2:
        return 2
    if n == 3:
        return 3
    if n == 4:
        return 4
    if n == 5:
        return 5
    if n == 6:
        return 6
    if n == 7:
        return 7
    if n == 8:
        return 8
    if n == 9:
        return 9
    if n == 10:
        return 10
    if n == 11:
        return 11
    if n == 12:
        return 12
    if n == 13:
        return 13
    if n == 14:
        return 14
    if n == 15:
        return 15
    if n == 16:
        return 16
    if n == 17:
        return 17
    if n == 18:
        return 18
    if n == 19:
        return 19
    if n == 20:
        return 20
    if n == 21:
        return 21
    if n == 22:
        return 22
    if n == 23:
        return 23
    if n == 24:
        return 24
    if n == 25:
        return 25
    if n == 26:
        return 26
    if n == 27:
        return 27
    if n == 28:
        return 28
    if n == 29:
        return 29
    if n == 30:
        return 30
    if n == 31:
        return 31
    if n == 32:
        return 32
    if n == 33:
        return 33
    if n == 34:
        return 34
    if n == 35:
        return 35
    if n == 36:
        return 36
    if n == 37:
        return 37
    if n == 38:
        return 38
    if n == 39:
        return 39
    if n == 40:
        return 40
    if n == 41:
        return 41
    if n == 42:
        return 42
    if n == 43:
        return 43
    if n == 44:
        return 44
    if n == 45:
        return 45
    if n == 46:

HuggingFaceH4--starchat2-15b-v0.1. fail_base: False, fail_plus: True

  def next_Perfect_Square(n):
    """
    Write a python function to find the next perfect square greater than a given number.
    assert next_Perfect_Square(35) == 36
    """
    import math
    root = math.sqrt(n)
    if root.is_integer():
        return (root + 1) ** 2
    else:
        return (math.ceil(root)) ** 2

# Test the function
assert next_Perfect_Square(35) == 36
assert next_Perfect_Square(100) == 121
assert next_Perfect_Square(121) == 144
assert next_Perfect_Square(0) == 1

codegemma-7b. fail_base: True, fail_plus: True

  """
Write a python function to find the next perfect square greater than a given number.
assert next_Perfect_Square(35) == 36
"""

import math
def next_Perfect_Square(num):
    if num < 0:
        return "Invalid input"
    if num == 0:
        return 1
    if num == 1:
        return 4
    if num == 2:
        return 9
    if num == 3:
        return 16
    if num == 4:
        return 25
    if num == 5:
        return 36
    if num == 6:
        return 49
    if num == 7:
        return 64
    if num == 8:
        return 81
    if num == 9:
        return 100
    if num == 10:
        return 121
    if num == 11:
        return 144
    if num == 12:
        return 169
    if num == 13:
        return 196
    if num == 14:
        return 225
    if num == 15:
        return 256
    if num == 16:
        return 289
    if num == 17:
        return 324
    if num == 18:
        return 361
    if num == 19:
        return 400
    if num == 20:
        return 441
    if num == 21:
        return 484
    if num == 22:
        return 529
    if num == 23:
        return 576
    if num == 24:
        return 625
    if num == 25:
        return 676
    if num == 26:
        return 729
    if num == 27:
        return 784
    if num == 28:
        return 841
    if num == 29:
        return 900
    if num == 30:
        return 961
    if num == 31:

code-llama-multi-13b. fail_base: True, fail_plus: True

  """
Write a python function to find the next perfect square greater than a given number.
assert next_Perfect_Square(35) == 36
"""


def next_Perfect_Square(n):
    """
    :param n:
    :return:
    """
    if n < 1:
        return 1
    if n == 1:
        return 1
    if n == 2:
        return 4
    if n == 3:
        return 9
    if n == 4:
        return 16
    if n == 5:
        return 25
    if n == 6:
        return 36
    if n == 7:
        return 49
    if n == 8:
        return 64
    if n == 9:
        return 81
    if n == 10:
        return 100
    if n == 11:
        return 121
    if n == 12:
        return 144
    if n == 13:
        return 169
    if n == 14:
        return 196
    if n == 15:
        return 225
    if n == 16:
        return 256
    if n == 17:
        return 289
    if n == 18:
        return 324
    if n == 19:
        return 361
    if n == 20:
        return 400
    if n == 21:
        return 441
    if n == 22:
        return 484
    if n == 23:
        return 529
    if n == 24:
        return 576
    if n == 25:
        return 625
    if n == 26:
        return 676
    if n == 27:
        return 729
    if n == 28:
        return 784
    if n == 29:
        return 841
    if n == 30:
        return 900
    if n == 31:

deepseek-coder-6.7b-instruct. fail_base: True, fail_plus: True

  Here is the Python function in a markdown style code block:

```python
def next_Perfect_Square(n):
    """
    This function takes an integer n as input and returns the next perfect square 
    greater than n.
    """
    # Calculate the square root of n
    root = n ** 0.5

    # If root is not an integer, increment it by 1
    if not root.is_integer():
        root += 1

    # Return the square of the new root
    return int(root ** 2)

# Test the function
assert next_Perfect_Square(35) == 36
```

This function works by first calculating the square root of the input number. If the square root is not an integer, it increments the square root by 1. Finally, it returns the square of the new square root, which is the next perfect square greater than the input number.

open-hermes-2.5-code-290k-13b. fail_base: False, fail_plus: True

  
def next_Perfect_Square(n):
    if n < 0:
        return None
    elif n == 0:
        return 0
    else:
        i = n
        while True:
            i += 1
            root = i ** 0.5
            if int(root + 0.5) ** 2 == i:
                return i

codet5p-6b. fail_base: True, fail_plus: True

  """
Write a python function to find the next perfect square greater than a given number.
assert next_Perfect_Square(35) == 36
"""


def next_Perfect_Square(n):
    i = n
    while i*i <= n:
        i += 1
    return i*i

print(next_Perfect_Square(35))
print(next_Perfect_Square(36))
print(next_Perfect_Square(37))
print(next_Perfect_Square(38))
print(next_Perfect_Square(39))
print(next_Perfect_Square(40))
print(next_Perfect_Square(41))
print(next_Perfect_Square(42))
print(next_Perfect_Square(43))
print(next_Perfect_Square(44))
print(next_Perfect_Square(45))
print(next_Perfect_Square(46))
print(next_Perfect_Square(47))
print(next_Perfect_Square(48))
print(next_Perfect_Square(49))
print(next_Perfect_Square(50))
print(next_Perfect_Square(51))
print(next_Perfect_Square(52))
print(next_Perfect_Square(53))
print(next_Perfect_Square(54))
print(next_Perfect_Square(55))
print(next_Perfect_Square(56))
print(next_Perfect_Square(57))
print(next_Perfect_Square(58))
print(next_Perfect_Square(59))
print(next_Perfect_Square(60))
print(next_Perfect_Square(61))
print(next_Perfect_Square(62))
print(next_Perfect_Square(63))
print(next_Perfect_Square(64))
print(next_Perfect_Square(65))
print(next_Perfect_Square(66))
print(next_Perfect_Square(67))
print(next_Perfect_Square(68))
print(next_Perfect_Square(69))
print(next_Perfect_Square(70))
print(next_Perfect_Square(71))
print(next_Perfect_Square(72))
print(next_Perfect_Square(73))
print(next_Perfect_Square(74))
print(next_Perfect_Square(75))
print(next_Perfect_Square(76))
print(next_Perfect_Square(77))
print(

codegemma-7b-it. fail_base: False, fail_plus: True

  def next_Perfect_Square(num):
  """
  Write a python function to find the next perfect square greater than a given number.
  assert next_Perfect_Square(35) == 36
  """
  if num**0.5 == int(num**0.5):
    return (int(num**0.5)+1)**2
  else:
    return (int(num**0.5)+1)**2

mistralai--Mistral-7B-Instruct-v0.2. fail_base: True, fail_plus: True

  """
Write a python function to find the next perfect square greater than a given number.
assert next_Perfect_Square(35) == 36
"""
def next_perfect_square(n):
    """
    Returns the smallest perfect square greater than the given number.
    """
    sqrt = n ** 0.5
    return int(sqrt + 1) ** 2

# Test case
assert next_perfect_square(35) == 36

xwincoder-34b. fail_base: True, fail_plus: True

  import math

def next_Perfect_Square(n):
    root = math.ceil(math.sqrt(n))
    return root ** 2

assert next_Perfect_Square(35) == 36

wizardcoder-15b. fail_base: True, fail_plus: True

  Here's the Python function to find the next perfect square greater than a given number:

```python
def next_Perfect_Square(num):
    """
    This function takes a number as input and returns the next perfect square greater than the given number.
    """
    # Find the square root of the given number
    sqrt_num = int(num ** 0.5)
    
    # Check if the square root is an integer
    if sqrt_num ** 2 == num:
        # If the square root is an integer, then the next perfect square is the square of the integer plus one
        return sqrt_num ** 2 + 1
    else:
        # If the square root is not an integer, then the next perfect square is the square of the integer plus one
        return (sqrt_num + 1) ** 2
```

Here's how the function works:

1. First, we find the square root of the given number using the `**` operator.
2. We then check if the square root is an integer or not. If it is an integer, then the next perfect square is the square of the integer plus one. If it is not an integer, then the next perfect square is the square of the integer plus one.
3. Finally, we return the next perfect square.

We can test the function using the `assert` statement as follows:

```python
assert next_Perfect_Square(35) == 36
```

This will raise an `AssertionError` if the function returns an incorrect value.

code-llama-34b. fail_base: True, fail_plus: True

  """
Write a python function to find the next perfect square greater than a given number.
assert next_Perfect_Square(35) == 36
"""

def next_Perfect_Square(n):
    for i in range(n+1, 1000000):
        if i**2 > n:
            return i**2

print(next_Perfect_Square(35))

deepseek-coder-33b-instruct. fail_base: True, fail_plus: True

  Here is the Python function to find the next perfect square greater than a given number:

```python
import math

def next_Perfect_Square(n):
    root = math.sqrt(n)
    if int(root + 0.5) ** 2 == n:
        return n
    else:
        return (int(root) + 1) ** 2

print(next_Perfect_Square(35))  # Output: 36
```

This function works by first calculating the square root of the given number. If the square of the integer part of the square root plus 0.5 is equal to the original number, then the number is a perfect square and it is returned as is. Otherwise, the next perfect square is calculated by adding 1 to the integer part of the square root and squaring the result.

phi-2. fail_base: False, fail_plus: True

  """
Write a python function to find the next perfect square greater than a given number.
assert next_Perfect_Square(35) == 36
"""

def next_Perfect_Square(n):
    i = 1
    while i*i <= n:
        i += 1
    return i*i

assert next_Perfect_Square(35) == 36

codet5p-2b. fail_base: True, fail_plus: True

  """
Write a python function to find the next perfect square greater than a given number.
assert next_Perfect_Square(35) == 36
"""


def next_Perfect_Square(num):
    if num == 1:
        return 1
    else:
        for i in range(num, 0, -1):
            if i*i == num:
                return i

print(next_Perfect_Square(35))

"""
Write a python function to find the next perfect square greater than a given number.
assert next_Perfect_Square(35) == 36
"""

def next_Perfect_Square(num):
    if num == 1:
        return 1
    else:
        for i in range(num, 0, -1):
            if i*i == num:
                return i

print(next_Perfect_Square(35))

"""
Write a python function to find the next perfect square greater than a given number.
assert next_Perfect_Square(35) == 36
"""

def next_Perfect_Square(num):
    if num == 1:
        return 1
    else:
        for i in range(num, 0, -1):
            if i*i == num:
                return i

print(next_Perfect_Square(35))

"""
Write a python function to find the next perfect square greater than a given number.
assert next_Perfect_Square(35) == 36
"""

def next_Perfect_Square(num):
    if num == 1:
        return 1
    else:
        for i in range(num, 0, -1):
            if i*i == num:
                return i

print(next_Perfect_Square(35))

"""
Write a python function to find the next perfect square greater than a given number.
assert next_Perfect_Square(35) == 36
"""

def next_Perfect_Square(num):
    if num == 1:
        return 1
    else:
        for i in range(num, 0, -1):
            if i*i == num:
                return i

print(next_Perfect_Square(35))

"""
Write a python function to find the next perfect square greater than a given number.
assert next_Perfect_Square(35) == 36
"""

def next_Perfect_Square(num):
    if num == 1:

bigcode--starcoder2-15b-instruct-v0.1. fail_base: True, fail_plus: True

  import math

def next_Perfect_Square(num):
    root = math.sqrt(num)
    if root.is_integer():
        return num + 1
    else:
        return (math.ceil(root) + 1) ** 2

codegemma-2b. fail_base: True, fail_plus: True

  """
Write a python function to find the next perfect square greater than a given number.
assert next_Perfect_Square(35) == 36
"""

def next_Perfect_Square(num):
    if num < 0:
        return "Invalid input"
    else:
        num = int(num)
        num = num + 1
        while True:
            if num * num > num:
                return num * num
            else:
                num = num + 1
<|file_separator|>

white-rabbit-neo-33b-v1. fail_base: False, fail_plus: True

  def next_Perfect_Square(num):
    # Calculate the square root of the number
    sqrt_num = num ** 0.5
    
    # Check if the square root is an integer
    if sqrt_num.is_integer():
        # If it is, find the next perfect square by adding 1 to the square root
        next_perfect_square = (sqrt_num + 1) ** 2
    else:
        # If it's not, find the nearest integer and then find the next perfect square
        nearest_int = int(sqrt_num) + 1
        next_perfect_square = nearest_int ** 2
    
    return next_perfect_square

# Test the function
assert next_Perfect_Square(35) == 36

microsoft--Phi-3-mini-4k-instruct. fail_base: True, fail_plus: True

  import math

def next_perfect_square(n):
    """
    Find the next perfect square greater than a given number.

    :param n: The given number
    :return: The next perfect square greater than the given number
    """
    root = math.isqrt(n)
    next_square = (root + 1) ** 2
    return next_square

# Test the function
assert next_perfect_square(35) == 36
assert next_perfect_square(100) == 121
assert next_perfect_square(1) == 4

speechless-codellama-34b. fail_base: False, fail_plus: True

  def next_Perfect_Square(n):
    i = n + 1
    while True:
        if i**0.5 == int(i**0.5):
            return i
        i += 1

assert next_Perfect_Square(35) == 36
```

Explanation:
The function `next_Perfect_Square` takes an integer `n` as input and returns the next perfect square greater than `n`. The function starts by initializing a variable `i` to `n+1`. It then enters a loop that continues until a perfect square is found. In each iteration of the loop, the function checks if the square root of `i` is an integer. If it is, then `i` is a perfect square and the function returns `i`. Otherwise, `i` is incremented by 1 and the loop continues.

The `assert` statement at the end of the code is used to test the function. It checks that `next_Perfect_Square(35)` returns `36`, which is the next perfect square greater than 35.

meta-llama-3-70b-instruct. fail_base: False, fail_plus: True

  def next_Perfect_Square(n):
    root = n ** 0.5
    if int(root + 0.5) ** 2 == n:
        return (root + 1) ** 2
    else:
        return (int(root) + 1) ** 2

stable-code-3b. fail_base: True, fail_plus: True

  """
Write a python function to find the next perfect square greater than a given number.
assert next_Perfect_Square(35) == 36
"""

def next_Perfect_Square(num):
    if num == 0:
        return 0
    if num == 1:
        return 1
    if num == 2:
        return 4
    if num == 3:
        return 9
    if num == 4:
        return 16
    if num == 5:
        return 25
    if num == 6:
        return 36
    if num == 7:
        return 49
    if num == 8:
        return 64
    if num == 9:
        return 81
    if num == 10:
        return 100
    if num == 11:
        return 121
    if num == 12:
        return 144
    if num == 13:
        return 169
    if num == 14:
        return 196
    if num == 15:
        return 225
    if num == 16:
        return 256
    if num == 17:
        return 289
    if num == 18:
        return 324
    if num == 19:
        return 361
    if num == 20:
        return 400
    if num == 21:
        return 441
    if num == 22:
        return 484
    if num == 23:
        return 529
    if num == 24:
        return 576
    if num == 25:
        return 625
    if num == 26:
        return 676
    if num == 27:
        return 729
    if num == 28:
        return 784
    if num == 29:
        return 841
    if num == 30:
        return 900
    if num == 31:
        return 961
    if num == 32:
        return 1024
    if num == 33:
        return 1089
    if num == 34:
        return 1156
    if num == 35:
        return 1225
    if num == 36:
        return 1296
    if num == 37:
        return 1369
    if num == 38:
        return 1444
    if num == 39:
        return 1521
    if num == 40:
        return 1600
    if num == 41:
        return 1681
    if num == 42:
        return 1764
    if num == 43:
        return 1849
    if

codegen-6b. fail_base: True, fail_plus: True

  """
Write a python function to find the next perfect square greater than a given number.
assert next_Perfect_Square(35) == 36
"""

def next_Perfect_Square(n):
    """
    >>> next_Perfect_Square(35)
    36
    """
    if n == 1:
        return 2
    else:
        return int(n**0.5) + 1

"""
Write a python function to find the next perfect square greater than a given number.
assert next_Perfect_Square(35) == 36
"""

def next_Perfect_Square(n):
    """
    >>> next_Perfect_Square(35)
    36
    """
    if n == 1:
        return 2
    else:
        return int(n**0.5) + 1

"""
Write a python function to find the next perfect square greater than a given number.
assert next_Perfect_Square(35) == 36
"""

def next_Perfect_Square(n):
    """
    >>> next_Perfect_Square(35)
    36
    """
    if n == 1:
        return 2
    else:
        return int(n**0.5) + 1

"""
Write a python function to find the next perfect square greater than a given number.
assert next_Perfect_Square(35) == 36
"""

def next_Perfect_Square(n):
    """
    >>> next_Perfect_Square(35)
    36
    """
    if n == 1:
        return 2
    else:
        return int(n**0.5) + 1

"""
Write a python function to find the next perfect square greater than a given number.
assert next_Perfect_Square(35) == 36
"""

def next_Perfect_Square(n):
    """
    >>> next_Perfect_Square(35)
    36
    """
    if n == 1:
        return 2
    else:
        return int(n**0.5) + 1

"""
Write a python function to find the next perfect square greater than a given number.
assert next_Perfect_Square(35) == 36
"""

def next_Perfect_Square(n):
    """
    >>> next_Perfect_Square(35)
    36
    """
    if n == 1:
        return 2
    else:
        

gpt-4-1106-preview. fail_base: True, fail_plus: True

  """
Write a python function to find the next perfect square greater than a given number.
assert next_Perfect_Square(35) == 36
"""


import math

def next_Perfect_Square(n):
    root = math.ceil(math.sqrt(n))
    return root ** 2

# Example usage:
# result = next_Perfect_Square(35)
# print(result)  # Output: 36

gemma-7b-it. fail_base: True, fail_plus: True

  import math

def next_Perfect_Square(n):
    """
    Write a python function to find the next perfect square greater than a given number.

    assert next_Perfect_Square(35) == 36
    """

    # Find the square root of n.
    sqrt_n = int(math.sqrt(n))

    # If the square root is not perfect, round up to the next integer.
    if sqrt_n * sqrt_n != n:
        sqrt_n += 1

    # Return the square of the next perfect square.
    return sqrt_n ** 2

opencodeinterpreter-ds-33b. fail_base: False, fail_plus: True

  ```python
def next_Perfect_Square(num):
    i = num + 1
    while True:
        if (i**0.5).is_integer():
            return i
        i += 1

# Test the function
print(next_Perfect_Square(35))  # Output: 36

openchat. fail_base: True, fail_plus: True

  import math

def next_Perfect_Square(n):
    # Find the next perfect square by taking the square root of n, rounding up to the nearest integer,
    # and then squaring the result.
    next_square = math.ceil(math.sqrt(n)) ** 2
    return next_square

# Test the function
assert next_Perfect_Square(35) == 36

speechless-starcoder2-7b. fail_base: True, fail_plus: True

  import math

def next_Perfect_Square(n):
    # Find the square root of the number
    sqrt = math.sqrt(n)

    # Check if the square root is an integer
    if sqrt.is_integer():
        return n + 1

    # If not, find the next perfect square
    else:
        # Find the next integer
        next_int = math.ceil(sqrt)

        # Return the square of the next integer
        return next_int ** 2

# Test the function
assert next_Perfect_Square(35) == 36

wizardcoder-7b. fail_base: False, fail_plus: True

  Here's the Python function to find the next perfect square greater than a given number:

```python
def next_Perfect_Square(num):
    """
    This function takes a number as input and returns the next perfect square greater than the given number.
    """
    # Find the square root of the number
    sqrt_num = int(num ** 0.5)
    # If the square root is an integer, return the next perfect square
    if sqrt_num ** 2 == num:
        return (sqrt_num + 1) ** 2
    # If the square root is not an integer, return the next integer square
    else:
        return (sqrt_num + 1) ** 2
```

We first find the square root of the given number using the `**` operator. If the square root is an integer, we return the next perfect square by adding 1 to it and squaring it. If the square root is not an integer, we return the next integer square by adding 1 to it and squaring it. 

octocoder. fail_base: True, fail_plus: True

  """
Write a python function to find the next perfect square greater than a given number.
assert next_Perfect_Square(35) == 36
"""


def next_Perfect_Square(n):
    if n == 1:
        return 1
    i = 1
    while i * i < n:
        i += 1
    return i * i

gemma-1.1-7b-it. fail_base: True, fail_plus: True

  import math

def next_Perfect_Square(num):
    """
    Finds the next perfect square greater than a given number.

    Args:
        num (int): The given number.

    Returns:
        int: The next perfect square greater than the given number.
    """
    return math.ceil(math.sqrt(num)) ** 2

deepseek-coder-6.7b-base. fail_base: True, fail_plus: True

  """
Write a python function to find the next perfect square greater than a given number.
assert next_Perfect_Square(35) == 36
"""


def next_Perfect_Square(n):
    """
    :param n: int
    :return: int
    """
    if n < 0:
        return -1
    if n == 0:
        return 1
    if n == 1:
        return 4
    if n == 2:
        return 9
    if n == 3:
        return 16
    if n == 4:
        return 25
    if n == 5:
        return 36
    if n == 6:
        return 49
    if n == 7:
        return 64
    if n == 8:
        return 81
    if n == 9:
        return 100
    if n == 10:
        return 121
    if n == 11:
        return 144
    if n == 12:
        return 169
    if n == 13:
        return 196
    if n == 14:
        return 225
    if n == 15:
        return 256
    if n == 16:
        return 289
    if n == 17:
        return 324
    if n == 18:
        return 361
    if n == 19:
        return 400
    if n == 20:
        return 441
    if n == 21:
        return 484
    if n == 22:
        return 529
    if n == 23:
        return 576
    if n == 24:
        return 625
    if n == 25:
        return 676
    if n == 26:
        return 729
    if n == 27:
        return 784
    if n == 28:
        return 841
    if n == 29:
        return 900
    if n == 30:
        return 961
    if n == 31:
        return 1024
    if n == 32:

codegen-16b. fail_base: True, fail_plus: True

  """
Write a python function to find the next perfect square greater than a given number.
assert next_Perfect_Square(35) == 36
"""

def next_Perfect_Square(n):
    """
    >>> next_Perfect_Square(35)
    36
    """
    if n == 1:
        return 2
    else:
        return int(n**0.5) + 1

"""
Write a python function to find the next perfect square greater than a given number.
assert next_Perfect_Square(35) == 36
"""

def next_Perfect_Square(n):
    """
    >>> next_Perfect_Square(35)
    36
    """
    if n == 1:
        return 2
    else:
        return int(n**0.5) + 1

"""
Write a python function to find the next perfect square greater than a given number.
assert next_Perfect_Square(35) == 36
"""

def next_Perfect_Square(n):
    """
    >>> next_Perfect_Square(35)
    36
    """
    if n == 1:
        return 2
    else:
        return int(n**0.5) + 1

"""
Write a python function to find the next perfect square greater than a given number.
assert next_Perfect_Square(35) == 36
"""

def next_Perfect_Square(n):
    """
    >>> next_Perfect_Square(35)
    36
    """
    if n == 1:
        return 2
    else:
        return int(n**0.5) + 1

"""
Write a python function to find the next perfect square greater than a given number.
assert next_Perfect_Square(35) == 36
"""

def next_Perfect_Square(n):
    """
    >>> next_Perfect_Square(35)
    36
    """
    if n == 1:
        return 2
    else:
        return int(n**0.5) + 1

"""
Write a python function to find the next perfect square greater than a given number.
assert next_Perfect_Square(35) == 36
"""

def next_Perfect_Square(n):
    """
    >>> next_Perfect_Square(35)
    36
    """
    if n == 1:
        return 2
    else:
        

mistral-7b. fail_base: True, fail_plus: True

  """
Write a python function to find the next perfect square greater than a given number.
assert next_Perfect_Square(35) == 36
"""


def next_Perfect_Square(n):
    if n % 2 == 0:
        return n + 1
    else:
        return n + 2


print(next_Perfect_Square(35))

speechless-mistral-7b. fail_base: False, fail_plus: True

  def next_Perfect_Square(n):
    i = n + 1
    while True:
        if i ** 0.5 == int(i ** 0.5):
            return i
        i += 1

assert next_Perfect_Square(35) == 36
```

codet5p-16b. fail_base: True, fail_plus: True

  """
Write a python function to find the next perfect square greater than a given number.
assert next_Perfect_Square(35) == 36
"""


def next_Perfect_Square(num):
    if num == 1:
        return 2
    if num == 2:
        return 3
    if num == 3:
        return 4
    if num == 4:
        return 5
    if num == 5:
        return 6
    if num == 6:
        return 7
    if num == 7:
        return 8
    if num == 8:
        return 9
    if num == 9:
        return 10
    if num == 10:
        return 11
    if num == 11:
        return 12
    if num == 12:
        return 13
    if num == 13:
        return 14
    if num == 14:
        return 15
    if num == 15:
        return 16
    if num == 16:
        return 17
    if num == 17:
        return 18
    if num == 18:
        return 19
    if num == 19:
        return 20
    if num == 20:
        return 21
    if num == 21:
        return 22
    if num == 22:
        return 23
    if num == 23:
        return 24
    if num == 24:
        return 25
    if num == 25:
        return 26
    if num == 26:
        return 27
    if num == 27:
        return 28
    if num == 28:
        return 29
    if num == 29:
        return 30
    if num == 30:
        return 31
    if num == 31:
        return 32
    if num == 32:
        return 33
    if num == 33:
        return 34
    if num == 34:
        return 35
    if num == 35:
        return 36
    if num == 36:
        return 37
    if num == 37:
        return 38
    if num == 38:
        return 39
    if num == 39:
        return 40
    if num == 40:
        return 41
    if num == 41:
        return 42
    if num == 42:
        return 43
    if num == 43:
        return 44
    if num == 44:
        return 45
    if num == 45:
        return 46
    if num == 46:

code-llama-13b. fail_base: True, fail_plus: True

  """
Write a python function to find the next perfect square greater than a given number.
assert next_Perfect_Square(35) == 36
"""

def next_Perfect_Square(num):
    if num < 0:
        return -1
    if num == 0:
        return 1
    if num == 1:
        return 1
    if num == 2:
        return 4
    if num == 3:
        return 4
    if num == 4:
        return 9
    if num == 5:
        return 9
    if num == 6:
        return 9
    if num == 7:
        return 9
    if num == 8:
        return 9
    if num == 9:
        return 16
    if num == 10:
        return 16
    if num == 11:
        return 16
    if num == 12:
        return 16
    if num == 13:
        return 16
    if num == 14:
        return 16
    if num == 15:
        return 16
    if num == 16:
        return 25
    if num == 17:
        return 25
    if num == 18:
        return 25
    if num == 19:
        return 25
    if num == 20:
        return 25
    if num == 21:
        return 25
    if num == 22:
        return 25
    if num == 23:
        return 25
    if num == 24:
        return 25
    if num == 25:
        return 36
    if num == 26:
        return 36
    if num == 27:
        return 36
    if num == 28:
        return 36
    if num == 29:
        return 36
    if num == 30:
        return 36
    if num == 31:
        return 36
    if num == 32:
        return 36
    if num == 33:
       

xdan-l1-chat. fail_base: True, fail_plus: True

  import math

def next_perfect_square(n):
    sqrt_n = int(math.sqrt(n))
    if sqrt_n * sqrt_n == n:
        return sqrt_n * sqrt_n + 1
    else:
        return int(sqrt_n + 1) ** 2

assert next_perfect_square(35) == 36

solar-10.7b-instruct. fail_base: True, fail_plus: True

  """
Write a python function to find the next perfect square greater than a given number.
assert next_Perfect_Square(35) == 36
"""
def next_perfect_square(number: int) -> int:
    # Find the square root of the given number
    root = int(number ** 0.5)
    # Round up the square root to the nearest integer
    rounded_root = root + (root % 1 > 0.5)
    # Calculate the next perfect square
    next_perfect_square = rounded_root ** 2
    return next_perfect_square

assert next_perfect_square(35) == 36

gemma-2b. fail_base: True, fail_plus: True

  """
Write a python function to find the next perfect square greater than a given number.
assert next_Perfect_Square(35) == 36
"""



def next_Perfect_Square(n):
    if n == 1:
        return 1
    else:
        for i in range(n, 0, -1):
            if i * i == n:
                return i
            else:
                pass

claude-3-sonnet-20240229. fail_base: False, fail_plus: True

  Here's the Python code to find the next perfect square greater than a given number, wrapped in a markdown block:

```python
import math

def next_Perfect_Square(n):
    """
    Returns the next perfect square greater than the given number.
    
    Args:
        n (int): The given number.
        
    Returns:
        int: The next perfect square greater than n.
    """
    # Find the square root of n using math.sqrt()
    sqrt = int(math.sqrt(n))
    
    # If the square root is a perfect square, return the next perfect square
    if sqrt * sqrt == n:
        return (sqrt + 1) ** 2
    else:
        # Otherwise, find the smallest perfect square greater than n
        while True:
            sqrt += 1
            square = sqrt ** 2
            if square > n:
                return square

# Test the function
assert next_Perfect_Square(35) == 36
print(next_Perfect_Square(35))  # Output: 36
print(next_Perfect_Square(16))  # Output: 25
print(next_Perfect_Square(25))  # Output: 36

starcoder2-15b-oci. fail_base: False, fail_plus: True

  """
Write a python function to find the next perfect square greater than a given number.
assert next_Perfect_Square(35) == 36
"""


def next_Perfect_Square(num):
    while True:
        num += 1
        if num ** 0.5 % 1 == 0:
            return num

starcoder2-3b. fail_base: True, fail_plus: True

  """
Write a python function to find the next perfect square greater than a given number.
assert next_Perfect_Square(35) == 36
"""

def next_Perfect_Square(num):
    return num + (num % 2)

print(next_Perfect_Square(35))
/Python/Python_Basics/01_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics/02_Python_Basics

speechless-starcoder2-15b. fail_base: True, fail_plus: True

  import math

def next_Perfect_Square(n):
    return math.ceil(math.sqrt(n)) + 1

assert next_Perfect_Square(35) == 36

gemma-7b. fail_base: True, fail_plus: True

  """
Write a python function to find the next perfect square greater than a given number.
assert next_Perfect_Square(35) == 36
"""

def next_Perfect_Square(num):
    if num < 1:
        return -1
    if num == 1:
        return 1
    if num == 2:
        return 4
    if num == 3:
        return 4
    if num == 4:
        return 9
    if num == 5:
        return 9
    if num == 6:
        return 9
    if num == 7:
        return 9
    if num == 8:
        return 16
    if num == 9:
        return 16
    if num == 10:
        return 16
    if num == 11:
        return 16
    if num == 12:
        return 16
    if num == 13:
        return 16
    if num == 14:
        return 16
    if num == 15:
        return 16
    if num == 16:
        return 25
    if num == 17:
        return 25
    if num == 18:
        return 25
    if num == 19:
        return 25
    if num == 20:
        return 25
    if num == 21:
        return 25
    if num == 22:
        return 25
    if num == 23:
        return 25
    if num == 24:
        return 25
    if num == 25:
        return 36
    if num == 26:
        return 36
    if num == 27:
        return 36
    if num == 28:
        return 36
    if num == 29:
        return 36
    if num == 30:
        return 36
    if num == 31:
        return 36
    if num == 32:
        return 36
    if num == 33:
        return 36
    if num == 34:

opencodeinterpreter-ds-6.7b. fail_base: True, fail_plus: True

  ```python
import math

def next_Perfect_Square(n):
    root = math.sqrt(n)
    if int(root + 0.5) ** 2 == n:
        return n
    else:
        return (int(root + 1) ** 2)

# Test the function
print(next_Perfect_Square(35))