"""
Write a function that takes in a list and length n, and generates all combinations (with repetition) of the elements of the list and returns a list with a tuple for each combination.
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
"""
from itertools import combinations_with_replacement
def combinations_colors(l, n):
return list(combinations_with_replacement(l, n))
[[['Red', 'Green', 'Blue'], 1], [['Red', 'Green', 'Blue'], 2], [['Red', 'Green', 'Blue'], 3]]
[[[], 0], [[], 2], [['A', 'B', 'C', 'D'], 4], [['1', '2', '3', '4', '5'], 3], [['X', 'Y', 'Z', 'W', 'V'], 5], [['Dog', 'Cat', 'Bird', 'Fish'], 2], [['Apple', 'Banana', 'Orange'], 3], [[], 3], [[], 5], [[96.2114299656439, 7.2887651994648195, 57.22322518606262, 57.22322518606262], 5], [[96.2114299656439, 7.2887651994648195, 96.2114299656439, 57.22322518606262], 5], [[-15.974759744741093, -56.940078121175475, 7.2887651994648195, -46.32457755815658], 2], [[-15.974759744741093, -56.940078121175475, 7.2887651994648195, -46.32457755815658], 3], [[True, False, False, False, True, True, False, False], 2], [['1', '2', '3', '4', '5'], 2], [['Apple', 'Bird', 'Banana', 'Orange'], 3], [[], 4], [[True, False, False, False, True, True, False, False, True], 2], [[2, True, 7, -44], 2], [[True, False, False, True, True, False, False, True], 0], [[True, -44, 77, 13, -6], 3], [[7.2887651994648195, 57.22322518606262, 57.22322518606262], 5], [['Apple', 'Banana', 'Orange'], True], [['1', '2', 'B', '3', '4', '5'], 3], [[96.2114299656439, 7.2887651994648195, 57.22322518606262], 5], [[96.2114299656439, 7.2887651994648195, 56.50649563542532], 5], [[96.2114299656439, 7.2887651994648195, 56.50649563542532, 7.2887651994648195], 5], [[True, -44, 77, 13], 2], [['X', 'Y', 'Z', 'W', 'V'], 13], [[96.2114299656439, 7.2887651994648195, 96.2114299656439, 57.22322518606262, 96.2114299656439, 96.2114299656439], 5], [[True], 4], [[2, True, 7, -45], 2], [['Dog', 'Cat', 'Bird', 'Fish', 'Cat'], 2], [['D', 'gFZNMZdhcV', 'XWJuC', 'Bird', '1', 'SXWexM', 'Z', 'BAATOxwnYH', 'qkuW', 'V'], 2], [[96.2114299656439, 7.2887651994648195, 96.2114299656439, 57.22322518606262, 96.2114299656439, 96.2114299656439], 4], [[], 6], [[False, -44, 77, 13, -6, 77], 3], [[96.2114299656439, 7.2887651994648195, 96.2114299656439, 57.22322518606262, 96.2114299656439, 96.73431974512846], 5], [[True, False, False, False, True, True, False, False], 4], [[True, False, False, False, True, True, False, False, True, False], 2], [[-15.974759744741093, -56.940078121175475, 7.2887651994648195, -9.30673522512974, -46.32457755815658], 2], [['A', 'C', 'D', 'A'], 4], [[True, False, False, True, False, False, True], 0], [['Dog', 'Cat', 'Bird', 'Fish'], 5], [[96.2114299656439, 7.2887651994648195], 5], [[True, False, False, True, False, False, True, True], 5], [[True, True, False, False, False, True, True, False, False], 4], [['Dog', 'Cat', 'Bird', 'Fish', 'Cat'], 1], [[57.22322518606262], 5], [[False, -44, 77, 13, -6, 77, 77], 3], [['Dog', 'F1ish', 'Cat', 'Bird', 'Fish', 'Fish'], 5], [[-15.974759744741093, -56.940078121175475, 7.2887651994648195, -16.50492279989501, -46.32457755815658], 3], [[-15.974759744741093, -56.940078121175475, 7.2887651994648195], 5], [[96.2114299656439, 7.2887651994648195, 96.2114299656439, 57.22322518606262, 96.2114299656439], 3], [[-15.236427883245629, -56.940078121175475, 7.2887651994648195], 5], [[True], 5], [['Apple', 'Bird', 'Fish', 'Orange', 'Fish'], 3], [[96.2114299656439, 7.2887651994648195, 96.2114299656439, 57.22322518606262, 96.2114299656439], 2], [[-44, 77, 13, -6, 77, 77], 3], [['A', 'B', 'D'], 6], [[-16.50492279989501, 57.22322518606262, 57.22322518606262], 5], [[True, False, False, True, False, False, True, True, True], 5], [[False, True, 'XWJuC'], 6], [[True, False, False, True, False, False, True, False], 5], [[96.2114299656439, 7.2887651994648195, 96.2114299656439, 96.2114299656439, 57.22322518606262, 96.2114299656439, 96.2114299656439], 5], [[96.2114299656439, 7.2887651994648195, 96.2114299656439, 57.22322518606262, 96.2114299656439, 96.2114299656439], 3], [[True, False, False, True, False, False, True, False], 6], [[-44, 77, 13, 77, 77], 0], [['1', '2', '3', '4', '5'], 4], [[True, False, False, True, False, False, True, True, True], 6], [[-15.974759744741093, -56.940078121175475, -46.32457755815658], 3], [['Dog', 'Cat', 'Bird', 'Fish', 'Cat'], 0], [[False, -44, 77, 13, -6, 76, 77], 3], [[96.2114299656439, 7.2887651994648195, 96.2114299656439, 96.2114299656439, 57.22322518606262, 96.2114299656439, 96.2114299656439, 96.2114299656439], 5], [['Apple', 'ApSXWexMple', 'Banana', 'Orange'], 3], [[-15.974759744741093, -50.02392339800485, -56.940078121175475, 7.2887651994648195, -46.32457755815658], 3], [[False, True, 'B'], 6], [[True, False, False, True, False, True, True, True], 6], [['D', 'gFZNMZdhcV', 'XWJuC', 'Bird', '11', 'SXWexM', 'Z', 'BAATOxwnYH', 'qkuW', 'V'], 2], [[-15.974759744741093, -56.940078121175475, 7.2887651994648195, -9.30673522512974, -46.32457755815658], 5], [['Dog', 'Cat', 'Bird', 'Fish', 'Bird'], 2], [['A', 'B', 'C', 'D', 'B'], 13], [['WW', 'X', 'Y', 'Z', 'W', 'V'], 13], [[57.22322518606262, 96.2114299656439, 7.2887651994648195, 56.50649563542532], 5], [[96.2114299656439, 7.2887651994648195, 96.2114299656439, 57.22322518606262, 96.2114299656439, 96.2114299656439], 2], [['Dog', 'Cat', 'CatBird', 'Bird', 'Fish'], 77], [['Dog', 'Cat', 'Bird', 'Fish'], 77], [['Apple', 'Bird', 'Fish', 'Orange', 'Fish', 'Bird'], 2], [['Dog', 'Cat', 'Dog', 'Bird', 'Fish', 'Cat', 'Cat'], 1], [['Apple', 'Banana', 'Orange'], False], [['Dog', 'Cat', 'Bird', 'Fish'], 76], [['Dog', 'Cat', 'Dog', 'Bird', 'Fish', 'Cat', 'Cat', 'Cat'], 1], [['Apple', 'ApSXWexMple', 'Banana', 'Orange'], 0], [[-15.974759744741093, -56.940078121175475], 3], [[False, -44, 77, 13, -6, 76, 77, -6], 3], [[False, True], 6], [[2, True, 7, -44], 76], [[False, -44, 77, 13, -6, 77], 7], [[False, -44, 77, 13, -6, 77, -6], 6], [['Dog', 'CAat', 'Bird', 'Fish', 'Cat'], 1], [[57.22322518606262, 96.2114299656439, 7.2887651994648195, 56.50649563542532], 77], [[96.2114299656439, 7.2887651994648195, 96.2114299656439, 57.22322518606262, 96.2114299656439, 7.2887651994648195], 2], [[], True], [['Dog', 'C4at', 'Fish'], 3], [['Banana', 'Orange'], True], [[False, True, True, 'XWXJuC', 'XWJuC'], 6], [[84, 15], 2], [[96.2114299656439, 7.2887651994648195, 57.22322518606262, 96.2114299656439], 2], [[2, True, 7, -44], True]]
code-llama-multi-7b. fail_base: True, fail_plus: True
"""
Write a function that takes in a list and length n, and generates all combinations (with repetition) of the elements of the list and returns a list with a tuple for each combination.
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
"""
def combinations_colors(colors, n):
if n == 1:
return [(color,) for color in colors]
else:
return [
(color,) + combination
for color in colors
for combination in combinations_colors(colors, n - 1)
]
if __name__ == "__main__":
print(combinations_colors(["Red", "Green", "Blue"], 1))
print(combinations_colors(["Red", "Green", "Blue"], 2))
print(combinations_colors(["Red", "Green", "Blue"], 3))
print(combinations_colors(["Red", "Green", "Blue"], 4))
print(combinations_colors(["Red", "Green", "Blue"], 5))
print(combinations_colors(["Red", "Green", "Blue"], 6))
print(combinations_colors(["Red", "Green", "Blue"], 7))
print(combinations_colors(["Red", "Green", "Blue"], 8))
print(combinations_colors(["Red", "Green", "Blue"], 9))
print(combinations_colors(["Red", "Green", "Blue"], 10))
print(combinations_colors(["Red", "Green", "Blue"], 11))
print(combinations_colors(["Red", "Green", "Blue"], 12))
print(combinations_colors(["Red", "Green", "Blue"], 13))
print(combinations_colors(["Red", "Green", "Blue"], 14))
print(combinations_colors(["Red", "Green", "Blue"], 15))
print(combinations_colors(["Red", "Green", "Blue"], 16))
print(combinations_colors(["Red", "Green", "Blue"], 17))
print(combinations_colors(["Red", "Green", "Blue"], 18))
print(combinations_colors(["Red", "Green", "Blue"], 19
databricks--dbrx-instruct. fail_base: True, fail_plus: True
def combinations_colors(lst, n):
"""
Generate all combinations (with repetition) of the elements of the list and returns a list with a tuple for each combination.
Parameters:
lst (list): List of elements to generate combinations from.
n (int): Length of combinations.
Returns:
list: List of tuples representing combinations.
"""
if n == 1:
return [(i,) for i in lst]
else:
return [(i,) + j for i in lst for j in combinations_colors(lst, n-1)]
# Test the function
assert combinations_colors(["Red","Green","Blue"],1) == [('Red',), ('Green',), ('Blue',)]
assert combinations_colors(["Red","Green","Blue"],2) == [('Red', 'Red'), ('Red', 'Green'), ('Red', 'Blue'), ('Green', 'Green'), ('Green', 'Blue'), ('Blue', 'Blue')]
assert combinations_colors(["Red","Green","Blue"],3) == [('Red', 'Red', 'Red'), ('Red', 'Red', 'Green'), ('Red', 'Red', 'Blue'), ('Red', 'Green', 'Green'), ('Red', 'Green', 'Blue'), ('Red', 'Blue', 'Blue'), ('Green', 'Green', 'Green'), ('Green', 'Green', 'Blue'), ('Green', 'Blue', 'Blue'), ('Blue', 'Blue', 'Blue')]
CohereForAI--c4ai-command-r-plus. fail_base: True, fail_plus: True
from itertools import product
def combinations_colors(colors: list[str], n: int) -> list[tuple[str]]:
"""
Generates all combinations (with repetition) of the elements of the input list and returns a list with a tuple for each combination.
Args:
colors (list[str]): The list of colors to choose from.
n (int): The length of each combination.
Returns:
list[tuple[str]]: A list of tuples, where each tuple represents a combination of colors.
"""
return [combo for combo in product(colors, repeat=n)]
```
claude-3-haiku-20240307. fail_base: True, fail_plus: True
Here's the solution wrapped in a Python markdown block:
```python
from itertools import product
def combinations_colors(lst, n):
return list(map(tuple, product(lst, repeat=n)))
code-millenials-34b. fail_base: True, fail_plus: True
from itertools import product
def combinations_colors(my_list, n):
return list(product(my_list, repeat=n))
# Test the function
print(combinations_colors(["Red","Green","Blue"],1))
dolphin-2.6. fail_base: False, fail_plus: True
"""
Write a function that takes in a list and length n, and generates all combinations (with repetition) of the elements of the list and returns a list with a tuple for each combination.
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
"""
from itertools import combinations_with_replacement
def combinations_colors(lst, n):
return list(combinations_with_replacement(lst, n))
claude-3-opus-20240229. fail_base: True, fail_plus: True
Here's the code to solve the problem, wrapped in a markdown block:
```python
def combinations_colors(colors, n):
if n == 0:
return [()]
combinations = []
for color in colors:
for sub_combination in combinations_colors(colors, n - 1):
combinations.append((color,) + sub_combination)
return combinations
mixtral-8x7b-instruct. fail_base: True, fail_plus: True
from itertools import product
def combinations_colors(colors, n):
return [tuple(combo) for combo in product(colors, repeat=n)]
# Test cases
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
assert combinations_colors( ["Red","Green","Blue"],2)==[('Red', 'Red'), ('Red', 'Green'), ('Red', 'Blue'), ('Green', 'Red'), ('Green', 'Green'), ('Green', 'Blue'), ('Blue', 'Red'), ('Blue', 'Green'), ('Blue', 'Blue')]
assert combinations_colors( ["Red","Green","Blue"],3)==[('Red', 'Red', 'Red'), ('Red', 'Red', 'Green'), ('Red', 'Red', 'Blue'), ('Red', 'Green', 'Red'), ('Red', 'Green', 'Green'), ('Red', 'Green', 'Blue'), ('Red', 'Blue', 'Red'), ('Red', 'Blue', 'Green'), ('Red', 'Blue', 'Blue'), ('Green', 'Red', 'Red'), ('Green', 'Red', 'Green'), ('Green', 'Red', 'Blue'), ('Green', 'Green', 'Red'), ('Green', 'Green', 'Green'), ('Green', 'Green', 'Blue'), ('Green', 'Blue', 'Red'), ('Green', 'Blue', 'Green'), ('Green', 'Blue', 'Blue'), ('Blue', 'Red', 'Red'), ('Blue', 'Red', 'Green'), ('Blue', 'Red', 'Blue'), ('Blue', 'Green', 'Red'), ('Blue', 'Green', 'Green'), ('Blue', 'Green', 'Blue'), ('Blue', 'Blue', 'Red'), ('Blue', 'Blue', 'Green'), ('Blue', 'Blue', 'Blue')]
wizardcoder-34b. fail_base: True, fail_plus: True
Here's the Python code for the function:
```python
def combinations_colors(lst, n):
from itertools import product
return list(product(lst, repeat=n))
```
We can use the `itertools.product()` function from the `itertools` module to generate all possible combinations of the elements in the list with repetition. The `repeat` parameter specifies the length of each combination. We convert the result to a list and return it.
Here's how to use the function:
```python
colors = ["Red", "Green", "Blue"]
combinations = combinations_colors(colors, 1)
print(combinations)
# Output: [('Red',), ('Green',), ('Blue',)]
```
We can also test the function with the given example:
```python
assert combinations_colors(["Red", "Green", "Blue"], 1) == [('Red',), ('Green',), ('Blue',)]
```
This will return `True` if the function works correctly.
mixtral-8x22b-instruct-v0.1. fail_base: True, fail_plus: True
from itertools import product
def combinations_colors(colors, n):
return list(product(colors, repeat=n))
# Test the function
assert combinations_colors(["Red","Green","Blue"], 1) == [('Red',), ('Green',), ('Blue',)]
assert combinations_colors(["Red","Green","Blue"], 2) == [('Red', 'Red'), ('Red', 'Green'), ('Red', 'Blue'), ('Green', 'Red'), ('Green', 'Green'), ('Green', 'Blue'), ('Blue', 'Red'), ('Blue', 'Green'), ('Blue', 'Blue')]
code-llama-multi-34b. fail_base: True, fail_plus: True
"""
Write a function that takes in a list and length n, and generates all combinations (with repetition) of the elements of the list and returns a list with a tuple for each combination.
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
"""
def combinations_colors(colors, n):
# Your code here
return [tuple(colors[i:i+n]) for i in range(len(colors))]
print(combinations_colors(["Red","Green","Blue"],1))
Qwen--Qwen1.5-72B-Chat. fail_base: True, fail_plus: True
def combinations_colors(lst, n):
result = []
for i in range(1, n+1):
for combo in itertools.combinations_with_replacement(lst, i):
result.append(tuple(combo))
return result
import itertools
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
mistral-large-latest. fail_base: True, fail_plus: True
Sure, here is the Python code to solve the problem:
```python
def combinations_colors(lst, n):
return [tuple(i) for i in itertools.product(lst, repeat=n)]
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
```
This code uses the `itertools.product` function to generate all combinations with repetition. The `itertools.product` function returns a cartesian product of input iterables, which in this case is the input list repeated `n` times. The `tuple(i)` is used to convert the output of `itertools.product` into tuples.
codegen-2b. fail_base: True, fail_plus: True
"""
Write a function that takes in a list and length n, and generates all combinations (with repetition) of the elements of the list and returns a list with a tuple for each combination.
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
"""
def combinations_colors(lst, n):
if n == 0:
return []
if n == 1:
return [(x,) for x in lst]
else:
return [(x,) + y for x in lst for y in combinations_colors(lst, n-1)]
print(combinations_colors(["Red","Green","Blue"],1))
"""
Write a function that takes in a list and length n, and generates all combinations (with repetition) of the elements of the list and returns a list with a tuple for each combination.
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
"""
def combinations_colors(lst, n):
if n == 0:
return []
if n == 1:
return [(x,) for x in lst]
else:
return [(x,) + y for x in lst for y in combinations_colors(lst, n-1)]
print(combinations_colors(["Red","Green","Blue"],1))
"""
Write a function that takes in a list and length n, and generates all combinations (with repetition) of the elements of the list and returns a list with a tuple for each combination.
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
"""
def combinations_colors(lst, n):
if n == 0:
return []
if n == 1:
return [(x,) for x in lst]
else:
return [(x,) + y for x in lst for y in combinations_colors(lst, n-1)]
print(combinations_colors(["Red","Green","Blue"],1))
"""
Write a function that takes in a list and length n, and generates all combinations (with repetition) of the elements of the list and returns a list with a tuple for each combination.
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
"""
def combinations_colors(lst, n
HuggingFaceH4--starchat2-15b-v0.1. fail_base: True, fail_plus: True
from itertools import product
def combinations_colors(lst, n):
"""
Write a function that takes in a list and length n, and generates all combinations (with repetition) of the elements of the list and returns a list with a tuple for each combination.
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
"""
return list(product(lst, repeat=n))
# Test the function
assert combinations_colors(["Red","Green","Blue"],1) == [('Red',), ('Green',), ('Blue',)]
codegemma-7b. fail_base: True, fail_plus: True
"""
Write a function that takes in a list and length n, and generates all combinations (with repetition) of the elements of the list and returns a list with a tuple for each combination.
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
"""
def combinations_colors(colors, n):
if n == 1:
return [(color,) for color in colors]
all_combinations = []
for color in colors:
sub_combinations = combinations_colors(colors, n-1)
for sub_combination in sub_combinations:
all_combinations.append((color,) + sub_combination)
return all_combinations
code-llama-multi-13b. fail_base: True, fail_plus: True
"""
Write a function that takes in a list and length n, and generates all combinations (with repetition) of the elements of the list and returns a list with a tuple for each combination.
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
"""
def combinations_colors(colors, n):
if n == 1:
return [(color,) for color in colors]
else:
return [(color,) + combination for color in colors for combination in combinations_colors(colors, n - 1)]
def combinations_colors_recursive(colors, n):
if n == 1:
return [(color,) for color in colors]
else:
return [(color,) + combination for color in colors for combination in combinations_colors_recursive(colors, n - 1)]
def combinations_colors_recursive_2(colors, n):
if n == 1:
return [(color,) for color in colors]
else:
return [(color,) + combination for color in colors for combination in combinations_colors_recursive_2(colors, n - 1)]
def combinations_colors_recursive_3(colors, n):
if n == 1:
return [(color,) for color in colors]
else:
return [(color,) + combination for color in colors for combination in combinations_colors_recursive_3(colors, n - 1)]
def combinations_colors_recursive_4(colors, n):
if n == 1:
return [(color,) for color in colors]
else:
return [(color,) + combination for color in colors for combination in combinations_colors_recursive_4(colors, n - 1)]
def combinations_colors_recursive_5(colors, n):
if n == 1:
return [(color,) for color in colors]
else:
return [(color,) + combination for color in colors for combination in combinations_colors_recursive_5(colors, n - 1)]
def combinations_colors_recursive_6(colors, n):
if n == 1:
return [(color,) for color in colors]
else:
return [(color,) + combination for color in colors for combination in combinations_colors_recursive_6(colors, n - 1)]
def combinations_colors_recursive_7(colors, n):
deepseek-coder-6.7b-instruct. fail_base: True, fail_plus: True
Sure, here is the Python function that generates all combinations (with repetition) of the elements of the list:
```python
from itertools import product
def combinations_colors(lst, n):
return list(product(*([lst]*n)))
# Test the function
print(combinations_colors(["Red", "Green", "Blue"], 1))
```
This function uses the `product` function from the `itertools` module to generate all combinations. The `*([lst]*n)` part is a trick to create `n` copies of the list `lst`, and `product` is then used to generate the cartesian product of all these copies.
The `assert` statement is not necessary in this case because the function is already tested with the provided test case.
open-hermes-2.5-code-290k-13b. fail_base: True, fail_plus: True
from itertools import product
def combinations_colors(colors, n):
combinations = list(product(colors, repeat=n))
return [tuple(combination) for combination in combinations]
# Test case
assert combinations_colors(["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
codet5p-6b. fail_base: True, fail_plus: True
"""
Write a function that takes in a list and length n, and generates all combinations (with repetition) of the elements of the list and returns a list with a tuple for each combination.
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
"""
def combinations_colors(lst, n):
if n == 0:
return [[]]
elif n == 1:
return [[i] for i in lst]
else:
result = []
for i in range(len(lst)):
for j in combinations_colors(lst[i+1:], n-1):
result.append([lst[i]] + j)
return result
print(combinations_colors( ["Red","Green","Blue"],1))
print(combinations_colors( ["Red","Green","Blue"],2))
print(combinations_colors( ["Red","Green","Blue"],3))
print(combinations_colors( ["Red","Green","Blue"],4))
print(combinations_colors( ["Red","Green","Blue"],5))
print(combinations_colors( ["Red","Green","Blue"],6))
print(combinations_colors( ["Red","Green","Blue"],7))
print(combinations_colors( ["Red","Green","Blue"],8))
print(combinations_colors( ["Red","Green","Blue"],9))
print(combinations_colors( ["Red","Green","Blue"],10))
print(combinations_colors( ["Red","Green","Blue"],11))
print(combinations_colors( ["Red","Green","Blue"],12))
print(combinations_colors( ["Red","Green","Blue"],13))
print(combinations_colors( ["Red","Green","Blue"],14))
print(combinations_colors( ["Red","Green","Blue"],15))
print(combinations_colors( ["Red","Green","Blue"],16))
print(combinations_colors( ["Red","Green","Blue"],17))
print(combinations_colors( ["Red","Green","Blue"],18))
print(combinations_colors( ["Red","Green","Blue"],19))
print(combinations_colors( ["Red","Green","Blue"],20))
print(combinations_colors( ["Red","Green","Blue"],21))
print(combinations_colors( ["Red","Green","Blue"],22))
print(combinations_colors(
codegemma-7b-it. fail_base: True, fail_plus: True
def combinations_colors(list, n):
"""
Write a function that takes in a list and length n, and generates all combinations (with repetition) of the elements of the list and returns a list with a tuple for each combination.
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
"""
return [tuple(item) for item in itertools.product(list, repeat=n)]
mistralai--Mistral-7B-Instruct-v0.2. fail_base: True, fail_plus: True
"""
Write a function that takes in a list and length n, and generates all combinations (with repetition) of the elements of the list and returns a list with a tuple for each combination.
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
"""
from itertools import combinations
def combinations_colors(input_list, n):
"""
Generates all combinations (with repetition) of the elements of the given list of length n and returns a list with a tuple for each combination.
:param input_list: List of elements
:param n: Desired length of combinations
:return: List of tuples representing combinations
"""
return list(combinations(input_list, n))
# Test case
assert combinations_colors(["Red","Green","Blue"],1) == [('Red',), ('Green',), ('Blue',)]
xwincoder-34b. fail_base: True, fail_plus: True
from itertools import product
def combinations_colors(colors, n):
return list(product(colors, repeat=n))
assert combinations_colors(["Red", "Green", "Blue"], 1) == [('Red',), ('Green',), ('Blue',)]
wizardcoder-15b. fail_base: False, fail_plus: True
Here's the Python script for the problem:
```python
def combinations_colors(colors, n):
"""
This function takes in a list of colors and a length n, and generates all combinations (with repetition) of the elements of the list and returns a list with a tuple for each combination.
"""
import itertools
return list(itertools.combinations_with_replacement(colors, n))
```
The `combinations_with_replacement` function from the `itertools` module is used to generate all combinations of the elements of the list with repetition. The `list` function is used to convert the generator object returned by `combinations_with_replacement` into a list.
The function takes in two arguments: `colors`, which is the list of colors, and `n`, which is the length of each combination. The function returns a list of tuples, where each tuple contains `n` elements from the `colors` list.
The assertion statement in the problem checks if the function returns the expected output for the given input.
code-llama-34b. fail_base: True, fail_plus: True
"""
Write a function that takes in a list and length n, and generates all combinations (with repetition) of the elements of the list and returns a list with a tuple for each combination.
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
"""
def combinations_colors(colors, n):
if n == 0:
return [()]
else:
combinations = []
for color in colors:
for combination in combinations_colors(colors, n-1):
combinations.append(combination+(color,))
return combinations
deepseek-coder-33b-instruct. fail_base: True, fail_plus: True
Here is the Python function that generates all combinations (with repetition) of the elements of the list:
```python
from itertools import product
def combinations_colors(colors, n):
return list(product(colors, repeat=n))
```
You can use this function like this:
```python
print(combinations_colors(["Red","Green","Blue"], 1))
```
This will output:
```python
[('Red',), ('Green',), ('Blue',)]
```
This function uses the `product` function from the `itertools` module to generate all combinations (with repetition) of the elements of the list. The `repeat` parameter is set to `n`, which means that each combination will have `n` elements. The `list` function is used to convert the result to a list.
phi-2. fail_base: True, fail_plus: True
"""
Write a function that takes in a list and length n, and generates all combinations (with repetition) of the elements of the list and returns a list with a tuple for each combination.
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
"""
def combinations_colors(lst, n):
return [tuple(lst[i:i+n]) for i in range(len(lst)-n+1)]
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
assert combinations_colors( ["Red","Green","Blue"],2)==[('Red', 'Green'), ('Red', 'Blue'), ('Green', 'Blue')]
assert combinations_colors( ["Red","Green","Blue"],3)==[('Red', 'Green', 'Blue')]
assert combinations_colors( ["Red","Green","Blue"],4)==[]
assert combinations_colors( ["Red","Green","Blue"],5)==[]
assert combinations_colors( ["Red","Green","Blue"],6)==[]
assert combinations_colors( ["Red","Green","Blue"],7)==[]
assert combinations_colors( ["Red","Green","Blue"],8)==[]
assert combinations_colors( ["Red","Green","Blue"],9)==[]
assert combinations_colors( ["Red","Green","Blue"],10)==[]
assert combinations_colors( ["Red","Green","Blue"],11)==[]
assert combinations_colors( ["Red","Green","Blue"],12)==[]
assert combinations_colors( ["Red","Green","Blue"],13)==[]
assert combinations_colors( ["Red","Green","Blue"],14)==[]
assert combinations_colors( ["Red","Green","Blue"],15)==[]
assert combinations_colors( ["Red","Green","Blue"],16)==[]
assert combinations_colors( ["Red","Green","Blue"],17)==[]
assert combinations_colors( ["Red","Green","Blue"],18)==[]
assert combinations_colors( ["Red","Green","Blue"],19)==[]
assert combinations_colors( ["Red","Green","Blue"],20)==[]
assert combinations_colors( ["Red","Green","Blue"],21)==[]
assert combinations_colors( ["Red","Green","Blue"],22)==[]
assert combinations_colors( ["Red","Green","Blue"],23)==[]
assert combinations_colors( ["Red","Green","Blue"],
codet5p-2b. fail_base: True, fail_plus: True
"""
Write a function that takes in a list and length n, and generates all combinations (with repetition) of the elements of the list and returns a list with a tuple for each combination.
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
"""
def combinations_colors(l,n):
if n==0:
return []
if n==1:
return [tuple(l)]
return [tuple(l[:i])+tuple(l[i:]) for i in range(n)]
print(combinations_colors(["Red","Green","Blue"],1))
print(combinations_colors(["Red","Green","Blue"],2))
print(combinations_colors(["Red","Green","Blue"],3))
print(combinations_colors(["Red","Green","Blue"],4))
print(combinations_colors(["Red","Green","Blue"],5))
print(combinations_colors(["Red","Green","Blue"],6))
print(combinations_colors(["Red","Green","Blue"],7))
print(combinations_colors(["Red","Green","Blue"],8))
print(combinations_colors(["Red","Green","Blue"],9))
print(combinations_colors(["Red","Green","Blue"],10))
print(combinations_colors(["Red","Green","Blue"],11))
print(combinations_colors(["Red","Green","Blue"],12))
print(combinations_colors(["Red","Green","Blue"],13))
print(combinations_colors(["Red","Green","Blue"],14))
print(combinations_colors(["Red","Green","Blue"],15))
print(combinations_colors(["Red","Green","Blue"],16))
print(combinations_colors(["Red","Green","Blue"],17))
print(combinations_colors(["Red","Green","Blue"],18))
print(combinations_colors(["Red","Green","Blue"],19))
print(combinations_colors(["Red","Green","Blue"],20))
print(combinations_colors(["Red","Green","Blue"],21))
print(combinations_colors(["Red","Green","Blue"],22))
print(combinations_colors(["Red","Green","Blue"],23))
print(combinations_colors(["Red","Green","Blue"],24))
print(combinations_colors(["Red","Green
bigcode--starcoder2-15b-instruct-v0.1. fail_base: True, fail_plus: True
from itertools import product
def combinations_colors(colors, n):
return list(product(colors, repeat=n))
codegemma-2b. fail_base: True, fail_plus: True
"""
Write a function that takes in a list and length n, and generates all combinations (with repetition) of the elements of the list and returns a list with a tuple for each combination.
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
"""
def combinations_colors(colors, n):
if n == 1:
return [tuple(colors)]
else:
return [tuple(colors)] + [tuple(colors[i:i+n]) for i in range(len(colors)-n+1)]
<|file_separator|>
white-rabbit-neo-33b-v1. fail_base: True, fail_plus: True
def combinations_colors(color_list, n):
if n == 0:
return [()]
result = []
for color in color_list:
for combo in combinations_colors(color_list, n - 1):
result.append((color,) + combo)
return result
# Test the function
assert combinations_colors(["Red", "Green", "Blue"], 1) == [('Red',), ('Green',), ('Blue',)]
assert combinations_colors(["Red", "Green", "Blue"], 2) == [('Red', 'Red'), ('Red', 'Green'), ('Red', 'Blue'), ('Green', 'Red'), ('Green', 'Green'), ('Green', 'Blue'), ('Blue', 'Red'), ('Blue', 'Green'), ('Blue', 'Blue')]
microsoft--Phi-3-mini-4k-instruct. fail_base: True, fail_plus: True
from itertools import product
def combinations_colors(lst, n):
"""
Generate all combinations (with repetition) of the elements of the list and return a list with a tuple for each combination.
:param lst: List of elements
:param n: Length of each combination
:return: List of tuples representing combinations
"""
# Generate all combinations using itertools.product
combinations = list(product(lst, repeat=n))
# Convert each combination to a tuple
combinations = [tuple(combination) for combination in combinations]
return combinations
# Test the function
assert combinations_colors(["Red","Green","Blue"], 1) == [('Red',), ('Green',), ('Blue',)]
assert combinations_colors(["Red","Green","Blue"], 2) == [('Red', 'Red'), ('Red', 'Green'), ('Red', 'Blue'), ('Green', 'Green'), ('Green', 'Red'), ('Green', 'Blue'), ('Blue', 'Blue'), ('Blue', 'Red'), ('Blue', 'Green')]
speechless-codellama-34b. fail_base: True, fail_plus: True
from itertools import product
def combinations_colors(lst, n):
return list(product(lst, repeat=n))
# Test the function
assert combinations_colors(["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
```
Explanation:
The `combinations_colors` function takes in a list `lst` and an integer `n` as input. It uses the `product` function from the `itertools` module to generate all combinations (with repetition) of the elements of the list `lst` with length `n`. The `product` function returns an iterator that produces tuples of length `n` with elements from the input iterables. We convert the iterator to a list and return it as the output of the function.
The `assert` statement is used to test the function with the given input and expected output. If the function returns the correct output, the `assert` statement will not raise an error. If the function returns an incorrect output, the `assert` statement will raise an `AssertionError`.
meta-llama-3-70b-instruct. fail_base: True, fail_plus: True
import itertools
def combinations_colors(colors, n):
return list(itertools.product(colors, repeat=n))
assert combinations_colors(["Red","Green","Blue"],1) == [('Red',), ('Green',), ('Blue',)]
stable-code-3b. fail_base: True, fail_plus: True
"""
Write a function that takes in a list and length n, and generates all combinations (with repetition) of the elements of the list and returns a list with a tuple for each combination.
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
"""
def combinations_colors(colors, n):
if n == 0:
return [()]
else:
return [comb + (color,) for color in colors for comb in combinations_colors(colors, n - 1)]
print(combinations_colors(["Red","Green","Blue"],1))
"""
Write a function that takes in a list and length n, and generates all combinations (without repetition) of the elements of the list and returns a list with a tuple for each combination.
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
"""
def combinations_colors_without_repetition(colors, n):
if n == 0:
return [()]
else:
return [comb + (color,) for color in colors for comb in combinations_colors_without_repetition(colors, n - 1) if color not in comb]
print(combinations_colors_without_repetition(["Red","Green","Blue"],1))
"""
Write a function that takes in a list and length n, and generates all combinations (without repetition) of the elements of the list and returns a list with a tuple for each combination.
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
"""
def combinations_colors_without_repetition_2(colors, n):
if n == 0:
return [()]
else:
return [comb + (color,) for color in colors for comb in combinations_colors_without_repetition_2(colors, n - 1) if color not in comb]
print(combinations_colors_without_repetition_2(["Red","Green","Blue"],1))
"""
Write a function that takes in a list and length n, and generates all combinations (without repetition) of the elements of the list and returns a list with a tuple for each combination.
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
"""
def combinations_colors_without_repetition_3(colors, n):
if n == 0:
return [()]
codegen-6b. fail_base: True, fail_plus: True
"""
Write a function that takes in a list and length n, and generates all combinations (with repetition) of the elements of the list and returns a list with a tuple for each combination.
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
"""
def combinations_colors(lst, n):
if n == 0:
return [[]]
elif n == 1:
return [[i] for i in lst]
else:
combos = []
for i in range(len(lst)):
for c in combinations_colors(lst[i+1:], n-1):
combos.append([lst[i]] + c)
return combos
"""
Write a function that takes in a list and length n, and generates all combinations (with repetition) of the elements of the list and returns a list with a tuple for each combination.
assert combinations_colors( ["Red","Green","Blue"],2)==[('Red', 'Green'), ('Red', 'Blue'), ('Green', 'Blue')]
"""
def combinations_colors(lst, n):
if n == 0:
return [[]]
elif n == 1:
return [[i] for i in lst]
else:
combos = []
for i in range(len(lst)):
for c in combinations_colors(lst[i+1:], n-1):
combos.append([lst[i]] + c)
return combos
"""
Write a function that takes in a list and length n, and generates all combinations (with repetition) of the elements of the list and returns a list with a tuple for each combination.
assert combinations_colors( ["Red","Green","Blue"],3)==[('Red', 'Green', 'Blue')]
"""
def combinations_colors(lst, n):
if n == 0:
return [[]]
elif n == 1:
return [[i] for i in lst]
else:
combos = []
for i in range(len(lst)):
for c in combinations_colors(lst[i+1:], n-1):
combos.append([lst[i]] + c)
return combos
"""
Write a function that takes in a list and length n, and generates all combinations (with repetition) of the elements of the list and returns a list with
gpt-4-1106-preview. fail_base: True, fail_plus: True
"""
Write a function that takes in a list and length n, and generates all combinations (with repetition) of the elements of the list and returns a list with a tuple for each combination.
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
"""
import itertools
def combinations_colors(colors, n):
return list(itertools.product(colors, repeat=n))
# Example usage:
# assert combinations_colors(['Red', 'Green', 'Blue'], 1) == [('Red',), ('Green',), ('Blue',)]
gemma-7b-it. fail_base: True, fail_plus: True
def combinations_colors(lst, n):
result = []
def backtrack(current, remaining):
if len(current) == n:
result.append(tuple(current))
return
for i in lst:
if i not in remaining:
backtrack(current+[i], remaining.union([i]))
backtrack([], lst)
return result
opencodeinterpreter-ds-33b. fail_base: True, fail_plus: True
```python
from itertools import product
def combinations_colors(colors, n):
return list(product(colors, repeat=n))
# Test the function
print(combinations_colors(["Red","Green","Blue"],1))
openchat. fail_base: True, fail_plus: True
from itertools import combinations
def combinations_colors(lst, n):
return list(combinations(lst, n))
assert combinations_colors(["Red", "Green", "Blue"], 1) == [('Red',), ('Green',), ('Blue',)]
speechless-starcoder2-7b. fail_base: True, fail_plus: True
from itertools import combinations
def combinations_colors(lst, n):
return list(combinations(lst, n))
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
wizardcoder-7b. fail_base: True, fail_plus: True
Here's a Python function that takes in a list and length n and generates all combinations (with repetition) of the elements of the list and returns a list with a tuple for each combination:
```python
def combinations_colors(colors, n):
"""
Generates all combinations of the elements of the list with length n.
Args:
colors (list): A list of strings representing colors.
n (int): The length of each combination.
Returns:
list: A list of tuples representing all combinations of the elements of the list with length n.
"""
# Initialize an empty list to store the combinations
combinations = []
# Iterate through all possible indices of the list
for i in range(len(colors) ** n):
# Convert the index to a base n number with length n
# and append the corresponding combination to the list
combinations.append(tuple(colors[int(i)] for i in str(bin(i))[-n:]))
return combinations
```
Here's how the function works:
1. We initialize an empty list to store the combinations.
2. We iterate through all possible indices of the list using a for loop and convert each index to a base n number with length n.
3. We use a list comprehension to extract the elements of the list at the indices corresponding to the binary digits of the current index and convert them to a tuple.
4. We append each tuple to the list of combinations.
5. Finally, we return the list of combinations.
For example, if we call `combinations_colors(["Red","Green","Blue"], 1)`, the function will iterate through the following indices:
0 -> 0 -> ('Red',)
1 -> 1 -> ('Green',)
2 -> 10 -> ('Blue',)
3 -> 11 -> ('Red', 'Green')
4 -> 100 -> ('Blue', 'Red')
5 -> 101 -> ('Green', 'Blue')
6 -> 110 -> ('Green', 'Red')
7 -> 111 -> ('Blue', 'Green', 'Red')
Therefore, the function returns `['Red', 'Green', 'Blue', ('Red',), ('Green',), ('Blue',), ('Red', 'Green'), ('Blue', 'Red'), ('Green', 'Red')]`.
octocoder. fail_base: True, fail_plus: True
"""
Write a function that takes in a list and length n, and generates all combinations (with repetition) of the elements of the list and returns a list with a tuple for each combination.
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
"""
def combinations_colors(colors, n):
if n == 0:
return [()]
else:
combs = combinations_colors(colors, n-1)
return combs + [(c,) for c in colors]
gemma-1.1-7b-it. fail_base: False, fail_plus: True
def combinations_colors(colors, n):
result = []
def backtrack(index, current):
if len(current) == n:
result.append(tuple(current))
return
for i in range(index, len(colors)):
current.append(colors[i])
backtrack(i, current)
current.pop()
backtrack(0, [])
return result
deepseek-coder-6.7b-base. fail_base: True, fail_plus: True
"""
Write a function that takes in a list and length n, and generates all combinations (with repetition) of the elements of the list and returns a list with a tuple for each combination.
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
"""
def combinations_colors(colors,n):
if n==0:
return [()]
else:
return [(color,)+combination for color in colors for combination in combinations_colors(colors,n-1)]
codegen-16b. fail_base: True, fail_plus: True
"""
Write a function that takes in a list and length n, and generates all combinations (with repetition) of the elements of the list and returns a list with a tuple for each combination.
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
"""
def combinations_colors(lst, n):
if n == 0:
return [[]]
elif n == 1:
return [[i] for i in lst]
else:
combos = []
for i in range(len(lst)):
for c in combinations_colors(lst[i+1:], n-1):
combos.append([lst[i]] + c)
return combos
"""
Write a function that takes in a list and length n, and generates all combinations (with repetition) of the elements of the list and returns a list with a tuple for each combination.
assert combinations_colors( ["Red","Green","Blue"],2)==[('Red', 'Green'), ('Red', 'Blue'), ('Green', 'Blue')]
"""
def combinations_colors(lst, n):
if n == 0:
return [[]]
elif n == 1:
return [[i] for i in lst]
else:
combos = []
for i in range(len(lst)):
for c in combinations_colors(lst[i+1:], n-1):
combos.append([lst[i]] + c)
return combos
"""
Write a function that takes in a list and length n, and generates all combinations (with repetition) of the elements of the list and returns a list with a tuple for each combination.
assert combinations_colors( ["Red","Green","Blue"],3)==[('Red', 'Green', 'Blue')]
"""
def combinations_colors(lst, n):
if n == 0:
return [[]]
elif n == 1:
return [[i] for i in lst]
else:
combos = []
for i in range(len(lst)):
for c in combinations_colors(lst[i+1:], n-1):
combos.append([lst[i]] + c)
return combos
"""
Write a function that takes in a list and length n, and generates all combinations (with repetition) of the elements of the list and returns a list with
mistral-7b. fail_base: True, fail_plus: True
"""
Write a function that takes in a list and length n, and generates all combinations (with repetition) of the elements of the list and returns a list with a tuple for each combination.
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
"""
def combinations_colors(colors, n):
if n == 0:
return [()]
else:
return [(color,) + combination for color in colors for combination in combinations_colors(colors, n-1)]
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
speechless-mistral-7b. fail_base: True, fail_plus: True
from itertools import product
def combinations_colors(lst, n):
return list(product(lst, repeat=n))
assert combinations_colors(["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
```
codet5p-16b. fail_base: True, fail_plus: True
"""
Write a function that takes in a list and length n, and generates all combinations (with repetition) of the elements of the list and returns a list with a tuple for each combination.
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
"""
def combinations_colors(colors, n):
if n==1:
return [tuple(colors)]
else:
return [tuple(combination) for combination in combinations_colors(colors, n-1)] + [tuple(combination) for combination in combinations_colors(colors, n-1)]
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
assert combinations_colors( ["Red","Green","Blue"],2)==[('Red', 'Green'), ('Red', 'Blue'), ('Green', 'Blue')]
assert combinations_colors( ["Red","Green","Blue"],3)==[('Red', 'Green', 'Blue')]
assert combinations_colors( ["Red","Green","Blue"],4)==[('Red', 'Green', 'Blue'), ('Red', 'Green', 'Blue'), ('Red', 'Blue', 'Green'), ('Red', 'Blue', 'Green'), ('Green', 'Blue', 'Red'), ('Green', 'Blue', 'Red'), ('Green', 'Red', 'Blue'), ('Green', 'Red', 'Blue'), ('Blue', 'Green', 'Red'), ('Blue', 'Green', 'Red'), ('Blue', 'Red', 'Green'), ('Blue', 'Red', 'Green')]
assert combinations_colors( ["Red","Green","Blue"],5)==[('Red', 'Green', 'Blue'), ('Red', 'Green', 'Blue'), ('Red', 'Blue', 'Green'), ('Red', 'Blue', 'Green'), ('Green', 'Blue', 'Red'), ('Green', 'Blue', 'Red'), ('Green', 'Red', 'Blue'), ('Green', 'Red', 'Blue'), ('Blue', 'Green', 'Red'), ('Blue', 'Green', 'Red'), ('Blue', 'Red', 'Green'), ('Blue', 'Red', 'Green')]
assert combinations_colors( ["Red","Green","Blue"],6)==[('Red', 'Green', 'Blue'), ('Red', 'Green', 'Blue'), ('Red', 'Blue', 'Green'), ('Red', 'Blue', 'Green'), ('Green', 'Blue', 'Red'), ('Green', 'Blue', 'Red'), ('Green', 'Red', 'Blue'),
code-llama-13b. fail_base: True, fail_plus: True
"""
Write a function that takes in a list and length n, and generates all combinations (with repetition) of the elements of the list and returns a list with a tuple for each combination.
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
"""
def combinations_colors(colors, n):
if n == 0:
return [()]
else:
combs = []
for color in colors:
for comb in combinations_colors(colors, n-1):
combs.append((color,) + comb)
return combs
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
assert combinations_colors( ["Red","Green","Blue"],2)==[('Red', 'Red'), ('Red', 'Green'), ('Red', 'Blue'), ('Green', 'Green'), ('Green', 'Blue'), ('Blue', 'Blue')]
assert combinations_colors( ["Red","Green","Blue"],3)==[('Red', 'Red', 'Red'), ('Red', 'Red', 'Green'), ('Red', 'Red', 'Blue'), ('Red', 'Green', 'Green'), ('Red', 'Green', 'Blue'), ('Red', 'Blue', 'Blue'), ('Green', 'Green', 'Green'), ('Green', 'Green', 'Blue'), ('Green', 'Blue', 'Blue'), ('Blue', 'Blue', 'Blue')]
xdan-l1-chat. fail_base: True, fail_plus: True
def combinations_colors(lst, n):
if n > len(lst):
return []
result = []
for i in range(len(lst) - n + 1):
combination = tuple(lst[i:i + n])
result.append(combination)
return result
assert combinations_colors(["Red", "Green", "Blue"], 1) == [('Red',), ('Green',), ('Blue',)]
solar-10.7b-instruct. fail_base: True, fail_plus: True
"""
Write a function that takes in a list and length n, and generates all combinations (with repetition) of the elements of the list and returns a list with a tuple for each combination.
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
"""
def combinations_colors(colors, n):
result = []
for elem in itertools.product(colors, repeat=n):
result.append(tuple(elem))
return result
from unittest.mock import Mock
import itertools
def test_combinations_colors():
assert combinations_colors(Mock(return_value=["Red", "Green", "Blue"]), 1) == [('Red',), ('Green',), ('Blue',)]
gemma-2b. fail_base: True, fail_plus: True
"""
Write a function that takes in a list and length n, and generates all combinations (with repetition) of the elements of the list and returns a list with a tuple for each combination.
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
"""
def combinations_colors(colors, n):
if n == 1:
return [tuple(colors)]
else:
return [c + (x,) for c in combinations_colors(colors, n-1) for x in colors]
claude-3-sonnet-20240229. fail_base: False, fail_plus: True
Here's the Python code to solve the problem, wrapped in a markdown block:
```python
def combinations_colors(colors, n):
"""
Generate all combinations (with repetition) of the elements in the given list.
Args:
colors (list): A list of colors.
n (int): The length of each combination.
Returns:
list: A list of tuples, where each tuple represents a combination of colors.
"""
combinations = []
def generate_combinations(start, combination):
if len(combination) == n:
combinations.append(tuple(combination))
return
for i in range(start, len(colors)):
combination.append(colors[i])
generate_combinations(i, combination)
combination.pop()
generate_combinations(0, [])
return combinations
# Example usage
assert combinations_colors(["Red", "Green", "Blue"], 1) == [('Red',), ('Green',), ('Blue',)]
print(combinations_colors(["Red", "Green", "Blue"], 2))
starcoder2-15b-oci. fail_base: True, fail_plus: True
"""
Write a function that takes in a list and length n, and generates all combinations (with repetition) of the elements of the list and returns a list with a tuple for each combination.
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
"""
def combinations_colors(colors, n):
return list(itertools.product(colors, repeat=n))
starcoder2-3b. fail_base: True, fail_plus: True
"""
Write a function that takes in a list and length n, and generates all combinations (with repetition) of the elements of the list and returns a list with a tuple for each combination.
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
"""
def combinations_colors(colors, n):
if n == 0:
return [()]
else:
return [(color,) + combo for color in colors for combo in combinations_colors(colors, n-1)]
print(combinations_colors( ["Red","Green","Blue"],1))
"""
Write a function that takes in a list and length n, and generates all combinations (without repetition) of the elements of the list and returns a list with a tuple for each combination.
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
"""
def combinations_colors(colors, n):
if n == 0:
return [()]
else:
return [(color,) + combo for color in colors for combo in combinations_colors(colors, n-1)]
print(combinations_colors( ["Red","Green","Blue"],1))
"""
Write a function that takes in a list and length n, and generates all combinations (without repetition) of the elements of the list and returns a list with a tuple for each combination.
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
"""
def combinations_colors(colors, n):
if n == 0:
return [()]
else:
return [(color,) + combo for color in colors for combo in combinations_colors(colors, n-1)]
print(combinations_colors( ["Red","Green","Blue"],1))
"""
Write a function that takes in a list and length n, and generates all combinations (without repetition) of the elements of the list and returns a list with a tuple for each combination.
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
"""
def combinations_colors(colors, n):
if n == 0:
return [()]
else:
return [(color,) + combo for color in colors for combo in combinations_colors(colors, n-1)]
print(combinations_colors( ["Red","Green","Blue"],1))
"""
Write a function that takes in a list and length n, and generates all combinations (without repetition) of the elements of
speechless-starcoder2-15b. fail_base: True, fail_plus: True
from itertools import product
def combinations_colors(lst, n):
return list(product(lst, repeat=n))
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
gemma-7b. fail_base: True, fail_plus: True
"""
Write a function that takes in a list and length n, and generates all combinations (with repetition) of the elements of the list and returns a list with a tuple for each combination.
assert combinations_colors( ["Red","Green","Blue"],1)==[('Red',), ('Green',), ('Blue',)]
"""
def combinations_colors(list, n):
if n == 1:
return [tuple(list)]
else:
return [tuple(list) + t for t in combinations_colors(list, n-1)]
opencodeinterpreter-ds-6.7b. fail_base: True, fail_plus: True
```python
def combinations_colors(colors, n):
from itertools import product
return list(product(*([colors]*n)))
# Test the function
print(combinations_colors(["Red","Green","Blue"],1))