"""
Write a function to find the maximum sum of increasing subsequence from prefix until ith index and also including a given kth element which is after i, i.e., k > i .
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6) == 11
"""
def max_sum_increasing_subseq(a, n, index, k):
dp = [[0 for _ in range(n)] for _ in range(n)]
for i in range(n):
if a[i] > a[0]:
dp[0][i] = a[i] + a[0]
else:
dp[0][i] = a[i]
for i in range(1, n):
for j in range(n):
if a[j] > a[i] and j > i:
if dp[i - 1][i] + a[j] > dp[i - 1][j]:
dp[i][j] = dp[i - 1][i] + a[j]
else:
dp[i][j] = dp[i - 1][j]
else:
dp[i][j] = dp[i - 1][j]
return dp[index][k]
[[[1, 101, 2, 3, 100, 4, 5], 7, 4, 6], [[1, 101, 2, 3, 100, 4, 5], 7, 2, 5], [[11, 15, 19, 21, 26, 28, 31], 7, 2, 4]]
[[[5, 2, 4, 1, 3, 6], 6, 1, 3], [[5, 2, 4, 1, 3, 6], 6, 2, 3], [[5, 2, 4, 1, 3, 6], 6, 1, 2], [[5, 2, 4, 1, 3, 6], 6, 1, 5], [[5, 2, 4, 1, 3, 6], 6, 0, 3], [[5, 2, 5, 1, 3, 6], 6, 1, 3], [[5, 2, 5, 1, 3, 6], 6, 2, 3], [[5, 2, 4, 1, 3, 6], 6, 2, 4], [[4, 2, 4, 1, 3, 6], 6, 1, 2], [[3, 2, 4, 1, 3, 6], 6, 2, 3], [[5, 2, 4, 1, 3, 5], 6, 1, 2], [[5, 2, 4, 1, 3, 5], 6, 1, 4], [[5, 2, 4, 1, 3, 5], 6, 1, 5], [[5, 2, 4, 1, 3, 3], 6, 0, 3], [[5, 2, 4, 1, 3, 6], 6, 1, 4], [[5, 2, 4, 1, 3, 1], 6, 0, 3], [[5, 2, 4, 1, 3, 5], 6, 1, 3], [[5, 2, 5, 1, 3, 6], 6, 0, 3], [[4, 2, 4, 1, 3, 6], 6, 0, 2], [[5, 2, 5, 1, 3, 6], 6, 2, 4], [[5, 2, 4, 1, 1, 6], 6, 1, 2], [[5, 2, 5, 1, 3, 6], 6, 2, 5], [[5, 2, 5, 1, 3, 6], 6, 1, 5], [[5, 2, 4, 1, 3, 5], 6, 2, 3], [[5, 2, 5, 1, 3, 6], 6, 1, 4], [[5, 2, 4, 1, 3, 5], 6, 2, 4], [[5, 2, 4, 0, 1, 3, 6], 7, 1, 2], [[5, 2, 5, 1, 3, 6], 6, 0, 1], [[5, 3, 5, 1, 3, 6], 6, 1, 4], [[5, 2, 4, 2, 3, 5], 6, 1, 4], [[5, 2, 5, 1, 2, 6], 6, 0, 1], [[5, 3, 5, 1, 3, 6], 6, 2, 5], [[5, 3, 5, 1, 3, 6], 6, 1, 5], [[4, 3, 5, 1, 3, 6], 6, 1, 5], [[5, 2, 5, 1, 3, 6], 6, 3, 5], [[5, 2, 5, 1, 3, 6], 6, 1, 2], [[5, 3, 5, 1, 3, 6], 6, 2, 4], [[5, 2, 5, 1, 3, 6], 6, 0, 5], [[5, 2, 4, 1, 1, 6], 6, 1, 3], [[5, 2, 4, 1, 3, 5], 6, 2, 5], [[5, 2, 2, 1, 3, 6], 6, 1, 4], [[5, 2, 5, 1, 3, 6], 6, 0, 4], [[4, 3, 5, 1, 3, 6], 6, 1, 3], [[5, 2, 2, 1, 3, 6], 6, 0, 4], [[5, 2, 4, 2, 3, 5], 6, 1, 3], [[4, 2, 5, 1, 3, 6], 6, 1, 3], [[4, 2, 4, 0, 1, 3, 6], 7, 1, 2], [[5, 2, 4, 1, 3, 7], 6, 0, 3], [[5, 2, 4, 1, 3, 1], 6, 0, 4], [[5, 2, 2, 1, 3, 6], 6, 0, 5], [[5, 2, 4, 2, 3, 5], 6, 1, 5], [[5, 3, 5, 1, 3, 6], 6, 3, 4], [[5, 3, 5, 1, 3, 6], 6, 1, 2], [[5, 2, 4, 1, 3, 3], 6, 0, 4], [[5, 2, 5, 1, 3, 2], 6, 0, 4], [[5, 2, 5, 1, 3, 6, 5], 7, 2, 4], [[5, 2, 4, 0, 1, 3, 6], 7, 0, 2], [[5, 2, 4, 1, 3, 1], 6, 1, 3], [[5, 2, 4, 0, 3, 6], 6, 2, 4], [[5, 2, 5, 1, 3, 6], 6, 3, 4], [[5, 2, 5, 1, 3, 2], 6, 1, 4], [[2, 5, 2, 1, 3, 6], 6, 0, 4], [[5, 2, 4, 1, 3, 1], 6, 0, 2], [[5, 3, 5, 1, 3, 6], 6, 0, 4], [[4, 3, 5, 1, 2, 6], 6, 1, 3], [[5, 2, 4, 1, 2, 6], 6, 1, 2], [[4, 2, 5, 1, 3, 6], 6, 0, 3], [[5, 2, 4, 0, 1, 3, 6], 7, 0, 3], [[5, 2, 4, 1, 3, 3], 6, 0, 5], [[5, 2, 4, 1, 2, 6], 6, 1, 5], [[5, 3, 5, 1, 3, 3], 6, 1, 4], [[5, 2, 4, 1, 3, 6], 6, 2, 5], [[5, 2, 4, 1, 3, 3], 6, 0, 2], [[5, 3, 5, 1, 3, 6], 6, 0, 5], [[5, 3, 5, 1, 3, 3], 6, 2, 4], [[5, 4, 1, 3, 3, 3], 6, 0, 4], [[4, 3, 5, 1, 3, 6], 6, 1, 4], [[5, 3, 5, 0, 3, 6], 6, 0, 4], [[5, 2, 4, 1, 3, 1], 6, 0, 1], [[5, 2, 5, 0, 3, 6], 6, 0, 1], [[5, 3, 5, 1, 3, 6], 6, 3, 5], [[4, 3, 5, 1, 2, 6], 6, 1, 2], [[5, 2, 4, 1, 3, 1], 6, 0, 5], [[5, 3, 5, 2, 3, 6], 6, 2, 5], [[5, 3, 5, 1, 2, 6], 6, 3, 4], [[0, 5, 4, 1, 3, 3], 6, 0, 5], [[4, 3, 4, 1, 2, 6], 6, 1, 3], [[5, 2, 4, 3, 6, 3], 6, 1, 5], [[4, 3, 5, 1, 3, 6], 6, 3, 4], [[5, 2, 1, 3, 1], 5, 0, 2], [[5, 2, 5, 1, 3, 2], 6, 0, 3], [[5, 2, 4, 1, 3, 6], 6, 0, 2], [[5, 7, 4, 1, 3, 3], 6, 0, 5], [[5, 2, 5, 1, 3, 6, 5], 7, 1, 2], [[4, 3, 5, 0, 3, 6], 6, 0, 4], [[4, 3, 5, 1, 3, 6], 6, 3, 5], [[5, 3, 5, 1, 2, 6], 6, 3, 5], [[5, 2, 5, 1, 3, 6, 5], 7, 2, 6], [[5, 2, 4, 1, 3, 5], 6, 3, 5], [[5, 2, 4, 1, 3, 1], 6, 2, 3], [[5, 2, 4, 2, 7, 5], 6, 1, 4]]
code-llama-multi-7b. fail_base: True, fail_plus: True
"""
Write a function to find the maximum sum of increasing subsequence from prefix until ith index and also including a given kth element which is after i, i.e., k > i .
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6) == 11
"""
def max_sum_increasing_subseq(arr, i, k, n):
if i == n:
return 0
if k == n:
return arr[i]
if i > k:
return max(max_sum_increasing_subseq(arr, i + 1, k, n), arr[i] + max_sum_increasing_subseq(arr, i + 1, k, n))
return max_sum_increasing_subseq(arr, i + 1, k, n)
if __name__ == '__main__':
print(max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6))
print(max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 7))
print(max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 8))
print(max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 9))
print(max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 10))
print(max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 11))
print(max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 12))
print(max_sum_increasing_subseq([1, 101, 2,
databricks--dbrx-instruct. fail_base: True, fail_plus: True
def max_sum_increasing_subseq(arr, i, k, target):
if i == 0:
return arr[0] if arr[0] < target else 0
max_sum = 0
for j in range(i):
if arr[j] < target and arr[j] < arr[i]:
curr_sum = max_sum_increasing_subseq(arr, j, k, target - arr[i]) + arr[i]
max_sum = max(max_sum, curr_sum)
return max_sum
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6) == 11
CohereForAI--c4ai-command-r-plus. fail_base: True, fail_plus: True
def max_sum_increasing_subseq(arr: list[int], i: int, k: int, n: int) -> int:
assert i < k and k < n
dp = [0] * n
for idx in range(i + 1):
dp[idx] = arr[idx]
for idx in range(i + 1, k):
dp[idx] = max(dp[idx - 1], arr[idx])
dp[k] = dp[k - 1] + arr[k]
for idx in range(k + 1, n):
dp[idx] = max(dp[idx - 1], dp[idx - 2] + arr[idx])
return max(dp)
```
claude-3-haiku-20240307. fail_base: True, fail_plus: True
Here's the solution wrapped in a Python markdown block:
```python
def max_sum_increasing_subseq(arr, n, i, k):
"""
Find the maximum sum of increasing subsequence from prefix until ith index and also including a given kth element which is after i, i.e., k > i.
Args:
arr (list): The input array.
n (int): The length of the input array.
i (int): The index of the prefix.
k (int): The index of the element to be included.
Returns:
int: The maximum sum of the increasing subsequence.
"""
if i >= k:
return 0
# Create a dp array to store the maximum sum of increasing subsequence up to each index
dp = [0] * n
# Initialize the first element
dp[0] = arr[0]
# Fill the dp array
for j in range(1, n):
max_sum = 0
for l in range(j):
if arr[l] < arr[j]:
max_sum = max(max_sum, dp[l])
dp[j] = max_sum + arr[j]
# Find the maximum sum including the kth element
max_sum = 0
for j in range(i, k):
max_sum = max(max_sum, dp[j])
return max_sum
code-millenials-34b. fail_base: True, fail_plus: True
def max_sum_increasing_subseq(arr, i, k, n):
max_sum = 0
max_sum_ending_at_i = 0
for j in range(i):
if arr[j] < arr[k]:
max_sum_ending_at_i = max(max_sum_ending_at_i, arr[j])
max_sum += max_sum_ending_at_i
max_sum += sum(arr[i:k])
max_sum += arr[k]
return max_sum
print(max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6)) # 11
dolphin-2.6. fail_base: True, fail_plus: True
"""
Write a function to find the maximum sum of increasing subsequence from prefix until ith index and also including a given kth element which is after i, i.e., k > i .
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6) == 11
"""
def max_sum_increasing_subseq(arr, i, k, n):
# Initialize the dp array with 0
dp = [0] * n
# Initialize the max_sum with 0
max_sum = 0
# Loop through the array
for j in range(n):
# If the current element is greater than the previous element
if arr[j] > arr[j - 1]:
# Update the dp array with the maximum of the current element and the previous element
dp[j] = max(arr[j], dp[j - 1] + arr[j])
# Update the max_sum with the maximum of the current element and the previous element
max_sum = max(max_sum, dp[j])
# Return the max_sum
return max_sum
# Test the function
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6) == 11
claude-3-opus-20240229. fail_base: True, fail_plus: True
Here's the solution to the problem, wrapped in a markdown block:
```python
def max_sum_increasing_subseq(arr, n, i, k):
# Initialize an array to store the maximum sum of increasing subsequence
# ending at each index
max_sum = [0] * n
# Initialize the maximum sum ending at index 0
max_sum[0] = arr[0]
# Iterate from index 1 to i
for j in range(1, i+1):
max_sum[j] = arr[j]
# Check for increasing subsequence ending at index j
for p in range(j):
if arr[p] < arr[j] and max_sum[j] < max_sum[p] + arr[j]:
max_sum[j] = max_sum[p] + arr[j]
# Initialize the result variable
result = max_sum[i] + arr[k]
# Check for increasing subsequence from i+1 to k-1
for j in range(i+1, k):
if arr[j] < arr[k] and result < max_sum[i] + arr[j] + arr[k]:
result = max_sum[i] + arr[j] + arr[k]
return result
# Test the function
mixtral-8x7b-instruct. fail_base: True, fail_plus: True
from typing import List, Tuple
def max_sum_increasing_subseq(arr: List[int], i: int, k: int, n: int) -> int:
# Initialize an array to store the maximum sum of increasing subsequences ending at each index
dp = [0] * (n + 1)
# Initialize an array to store the last index of the smallest element in the increasing subsequence ending at each index
prev = [None] * (n + 1)
# Iterate over the array from left to right
for j in range(1, n + 1):
# Set the current element's value to itself
dp[j] = arr[j - 1]
# Set the current element's previous index to itself
prev[j] = j
# Iterate over all indices before the current index
for k in range(1, j):
# If the current element is greater than the previous element and the sum of the current element and the previous subsequence is greater than the current element
if arr[j - 1] > arr[k - 1] and dp[k] + arr[j - 1] > dp[j]:
# Set the current element's value to the sum of the previous subsequence and the current element
dp[j] = dp[k] + arr[j - 1]
# Set the current element's previous index to the previous element's previous index
prev[j] = prev[k]
# Initialize a variable to store the maximum sum of increasing subsequences that include the kth element
max_sum = -float('inf')
# Iterate over all indices from i to k
for j in range(i, k + 1):
# If the sum of the increasing subsequence ending at the current index and the kth element is greater than the current maximum sum
if dp[j] + arr[k] > max_sum:
# Set the maximum sum to the sum of the increasing subsequence and the kth element
max_sum = dp[j] + arr[k]
# Return the maximum sum
return max_sum
# Test
wizardcoder-34b. fail_base: True, fail_plus: True
Here's the Python script for the given problem:
def max_sum_increasing_subseq(arr, i, k):
n = len(arr)
if k <= i:
return "Invalid input"
# Initialize two lists to store the maximum sum including and excluding the kth element
incl = [0] * n
excl = [0] * n
# Initialize the maximum sum including the kth element
max_sum_incl = arr[k]
# Initialize the maximum sum excluding the kth element
max_sum_excl = 0
# Loop through the array from 0 to i-1
for j in range(i):
# If the current element is greater than the maximum sum including the kth element, update the maximum sum including the kth element
if arr[j] < arr[k]:
max_sum_incl = max(max_sum_incl, arr[j] + incl[j])
# Update the maximum sum excluding the kth element
max_sum_excl = max(max_sum_excl, excl[j])
# Update the maximum sum including the kth element
incl[j] = arr[j]
# Loop through the array from i to k-1
for j in range(i, k):
# Update the maximum sum including the kth element
incl[j] = max(max_sum_excl + arr[j], incl[j])
# Update the maximum sum excluding the kth element
max_sum_excl = max(max_sum_excl, excl[j])
# Loop through the array from k to n-1
for j in range(k, n):
# Update the maximum sum including the kth element
incl[j] = max(max_sum_excl + arr[j], incl[j])
# Update the maximum sum excluding the kth element
max_sum_excl = max(max_sum_excl, excl[j])
# Return the maximum sum including the kth element
return max_sum_incl
# Test the function with the given example
print(max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4)) # Output: 11
mixtral-8x22b-instruct-v0.1. fail_base: True, fail_plus: True
def max_sum_increasing_subseq(arr, n, k, x):
# Initialize dp array with zeros
dp = [0] * n
# Initialize max_sum with 0
max_sum = 0
# Iterate over the array
for i in range(n):
# If the current element is less than the kth element and the kth element is after i
if arr[i] < arr[x] and i < x:
# Update the dp value for the current index
dp[i] = max(dp[j] + arr[i] for j in range(i) if arr[j] < arr[i])
# Update the max_sum if necessary
max_sum = max(max_sum, dp[i])
# Return the max_sum
return max_sum + arr[x]
# Test the function
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6) == 11
code-llama-multi-34b. fail_base: True, fail_plus: True
"""
Write a function to find the maximum sum of increasing subsequence from prefix until ith index and also including a given kth element which is after i, i.e., k > i .
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6) == 11
"""
def max_sum_increasing_subseq(arr, k, i, j):
"""
:param arr: list of integers
:param k: integer
:param i: integer
:param j: integer
:return: integer
"""
if i == j:
return arr[i]
if i > j:
return 0
if k == i:
return arr[i] + max_sum_increasing_subseq(arr, k, i + 1, j)
return max(arr[i] + max_sum_increasing_subseq(arr, k, i + 1, j),
max_sum_increasing_subseq(arr, k, i + 1, j))
if __name__ == '__main__':
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5], 7, 4, 6) == 11
Qwen--Qwen1.5-72B-Chat. fail_base: True, fail_plus: True
def max_sum_increasing_subseq(arr, n, k, i):
def dp(arr, n, k, i):
if n == 0 or i < 0:
return 0
elif n == 1 or (k == n and i == 0):
return arr[n - 1]
elif i == 0:
return max(arr[n - 1], dp(arr, n - 1, k - 1, n - 2))
else:
with_k = arr[n - 1] + dp(arr, n - 1, k - 1, i - 1) if arr[n - 1] > arr[i - 1] else dp(arr, n - 1, k, i - 1)
without_k = dp(arr, n - 1, k, i)
return max(with_k, without_k)
return dp(arr, len(arr), n, i - 1)
# Test case
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5], 7, 4, 6) == 11
mistral-large-latest. fail_base: True, fail_plus: True
Sure, here's a Python function that should solve the problem. This function uses dynamic programming to find the maximum sum of an increasing subsequence up to a certain index, and then includes a specified element if it's greater than the last element of the subsequence.
```python
def max_sum_increasing_subseq(arr, n, i, k):
# Initialize dp array with all zeros
dp = [0] * n
# Initialize max_sum variable
max_sum = 0
# Fill dp array in bottom up manner
for j in range(i + 1):
# Initialize max_ending_here variable
max_ending_here = arr[j]
# Update max_ending_here for all indices from 0 to j-1
for l in range(j):
if arr[l] < arr[j] and dp[l] > max_ending_here:
max_ending_here = dp[l]
# Update dp[j]
dp[j] = max_ending_here + arr[j]
# Update max_sum if dp[j] is greater
if dp[j] > max_sum:
max_sum = dp[j]
# If kth element is greater than the last element of the subsequence, include it
if k <= n - 1 and arr[i] < arr[k]:
max_sum += arr[k]
return max_sum
# Test the function
arr = [1, 101, 2, 3, 100, 4, 5]
n = len(arr)
i = 3
k = 6
assert max_sum_increasing_subseq(arr, n, i, k) == 11
```
This function works by first finding the maximum sum of an increasing subsequence up to the ith index. It does this by iterating over the array up to the ith index and at each index, it finds the maximum sum of an increasing subsequence ending at that index. It then includes the kth element if it's greater than the last element of the subsequence. The time complexity of this function is O(n^2) because it uses two nested loops to find the maximum sum of an increasing subsequence.
codegen-2b. fail_base: True, fail_plus: True
"""
Write a function to find the maximum sum of increasing subsequence from prefix until ith index and also including a given kth element which is after i, i.e., k > i .
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6) == 11
"""
def max_sum_increasing_subseq(arr, k, i):
if i == 0:
return 0
if i == 1:
return arr[0]
if i == 2:
return max(arr[0], arr[1])
if i == 3:
return max(arr[0], arr[1], arr[2])
if i == 4:
return max(arr[0], arr[1], arr[2], arr[3])
if i == 5:
return max(arr[0], arr[1], arr[2], arr[3], arr[4])
if i == 6:
return max(arr[0], arr[1], arr[2], arr[3], arr[4], arr[5])
if i == 7:
return max(arr[0], arr[1], arr[2], arr[3], arr[4], arr[5], arr[6])
if i == 8:
return max(arr[0], arr[1], arr[2], arr[3], arr[4], arr[5], arr[6], arr[7])
if i == 9:
return max(arr[0], arr[1], arr[2], arr[3], arr[4], arr[5], arr[6], arr[7], arr[8])
if i == 10:
return max(arr[0], arr[1], arr[2], arr[3], arr[4], arr[5], arr[6], arr[7], arr[8], arr[9])
if i == 11:
return max(arr[0], arr[1], arr[2], arr[3], arr[4], arr[5], arr[6], arr[7], arr[8], arr[9], arr[10])
if i == 12:
return max(arr[0], arr[1], arr[2], arr[3], arr[4], arr[5], arr[6], arr[7], arr[8], arr[9], arr[10], arr[11])
if i == 13:
return max(arr[0], arr[1], arr[2], arr[3], arr[
HuggingFaceH4--starchat2-15b-v0.1. fail_base: True, fail_plus: True
def max_sum_increasing_subseq(arr, n, k, end):
# Initialize dp array with 0s
dp = [0] * n
# Initialize max_sum with the first element
max_sum = arr[0]
# Fill dp array
for i in range(1, n):
# For each element, find the maximum sum of increasing subsequence ending at i
dp[i] = max(arr[i], max(dp[j] + arr[i] for j in range(i)))
# Update max_sum
max_sum = max(max_sum, dp[i])
# Find the maximum sum of increasing subsequence including kth element after i
for i in range(k, end):
max_sum = max(max_sum, dp[i] + arr[k])
return max_sum
# Test the function
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5], 7, 4, 6) == 11
codegemma-7b. fail_base: True, fail_plus: True
"""
Write a function to find the maximum sum of increasing subsequence from prefix until ith index and also including a given kth element which is after i, i.e., k > i .
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6) == 11
"""
import sys
import math
import time
import os
import random
import copy
import re
import string
import json
import collections
import heapq
import itertools
import functools
import bisect
import operator
import array
import fractions
import io
import struct
import pickle
import base64
import hashlib
import zlib
import re
import array
import bisect
import collections
import contextlib
import functools
import itertools
import operator
import string
import time
import io
import struct
import pickle
import base64
import hashlib
import zlib
import re
import array
import bisect
import collections
import contextlib
import functools
import itertools
import operator
import string
import time
import io
import struct
import pickle
import base64
import hashlib
import zlib
import re
import array
import bisect
import collections
import contextlib
import functools
import itertools
import operator
import string
import time
import io
import struct
import pickle
import base64
import hashlib
import zlib
import re
import array
import bisect
import collections
import contextlib
import functools
import itertools
import operator
import string
import time
import io
import struct
import pickle
import base64
import hashlib
import zlib
import re
import array
import bisect
import collections
import contextlib
import functools
import itertools
import operator
import string
import time
import io
import struct
import pickle
import base64
import hashlib
import zlib
import re
import array
import bisect
import collections
import contextlib
import functools
import itertools
import operator
import string
import time
import io
import struct
import pickle
import base64
import hashlib
import zlib
import re
import array
import bisect
import collections
import contextlib
import functools
import itertools
import operator
import string
import time
import io
import struct
import pickle
import base64
import hashlib
import zlib
import re
import array
import bisect
import collections
import contextlib
import functools
import itertools
import operator
import string
import time
import io
import struct
import pickle
import base64
import hashlib
import zlib
import re
import array
import bisect
import collections
import contextlib
import functools
import itertools
import
code-llama-multi-13b. fail_base: True, fail_plus: True
"""
Write a function to find the maximum sum of increasing subsequence from prefix until ith index and also including a given kth element which is after i, i.e., k > i .
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6) == 11
"""
def max_sum_increasing_subseq(arr, i, k, m):
if i == 0:
return arr[i]
if i == 1:
return max(arr[i], arr[i-1])
if i == 2:
return max(arr[i], arr[i-1], arr[i-2])
if i == 3:
return max(arr[i], arr[i-1], arr[i-2], arr[i-3])
if i == 4:
return max(arr[i], arr[i-1], arr[i-2], arr[i-3], arr[i-4])
if i == 5:
return max(arr[i], arr[i-1], arr[i-2], arr[i-3], arr[i-4], arr[i-5])
if i == 6:
return max(arr[i], arr[i-1], arr[i-2], arr[i-3], arr[i-4], arr[i-5], arr[i-6])
if i == 7:
return max(arr[i], arr[i-1], arr[i-2], arr[i-3], arr[i-4], arr[i-5], arr[i-6], arr[i-7])
if i == 8:
return max(arr[i], arr[i-1], arr[i-2], arr[i-3], arr[i-4], arr[i-5], arr[i-6], arr[i-7], arr[i-8])
if i == 9:
return max(arr[i], arr[i-1], arr[i-2], arr[i-3], arr[i-4], arr[i-5], arr[i-6], arr[i-7], arr[i-8], arr[i-9])
if i == 10:
return max(arr[i], arr[i-1], arr[i-2], arr[i-3], arr[i-4], arr[i-5], arr[i-
deepseek-coder-6.7b-instruct. fail_base: True, fail_plus: True
Here is the Python function in a markdown style code block:
```python
def max_sum_increasing_subseq(arr, n, k, i):
# Initialize the dp array with -1
dp = [-1] * n
dp[i] = arr[i]
# Iterate from i+1 to n
for j in range(i+1, n):
# Iterate from 0 to i
for l in range(i):
# If arr[j] is greater than arr[l] and dp[l] is greater than dp[j]
if arr[j] > arr[l] and (dp[l] > dp[j] or dp[j] == -1):
dp[j] = arr[j] + dp[l]
# If arr[j] is greater than dp[j]
if arr[j] > dp[j] or dp[j] == -1:
dp[j] = arr[j]
# Find the maximum sum
max_sum = max(dp)
# If k is in the range of n and dp[k] is greater than 0
if 0 <= k < n and dp[k] > 0:
max_sum += dp[k]
return max_sum
# Test the function
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6) == 11
```
This function uses dynamic programming to find the maximum sum of increasing subsequence from prefix until ith index and also including a given kth element which is after i, i.e., k > i. The function first initializes a dp array with -1. Then it iterates from i+1 to n and for each j, it iterates from 0 to i to find the maximum sum of increasing subsequence. If arr[j] is greater than dp[j], it updates dp[j] with arr[j]. Finally, it finds the maximum sum and if k is in the range of n and dp[k] is greater than 0, it adds dp[k] to the maximum sum. The function returns the maximum sum.
open-hermes-2.5-code-290k-13b. fail_base: True, fail_plus: True
def max_sum_increasing_subseq(arr, k):
n = len(arr)
prefix_sum = [0] * (n + 1)
for i in range(n):
prefix_sum[i + 1] = prefix_sum[i] + arr[i]
dp = [0] * (n + 1)
for i in range(1, n + 1):
dp[i] = max(dp[i - 1], prefix_sum[i] - arr[i - 1])
max_sum = dp[k]
for i in range(k - 1, -1, -1):
max_sum = max(max_sum, dp[i] + arr[i])
return max_sum
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5], 7, 4, 6) == 11
codet5p-6b. fail_base: True, fail_plus: True
"""
Write a function to find the maximum sum of increasing subsequence from prefix until ith index and also including a given kth element which is after i, i.e., k > i .
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6) == 11
"""
def max_sum_increasing_subseq(arr, k, i):
if k > i:
return 0
if k == i:
return arr[i]
if k == 0:
return 0
if k > len(arr) - 1:
return 0
if k == len(arr) - 1:
return arr[k]
if k == len(arr) - 2:
return max(arr[k], arr[k] + arr[k + 1])
return max(arr[k] + max_sum_increasing_subseq(arr, k + 1, i), max_sum_increasing_subseq(arr, k + 2, i))
print(max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6))
print(max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 5))
print(max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6))
print(max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 7))
print(max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 8))
print(max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 9))
print(max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 10))
print(max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 11))
print(max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 12))
print(max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 13))
print(max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7
codegemma-7b-it. fail_base: True, fail_plus: True
def max_sum_increasing_subseq(arr, n, i, k):
if i == k:
return arr[i]
if i > k:
return -1
max_sum = arr[i]
for j in range(i + 1, k + 1):
if arr[i] < arr[j]:
max_sum += arr[j]
return max_sum
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6) == 11
mistralai--Mistral-7B-Instruct-v0.2. fail_base: True, fail_plus: True
"""
Write a function to find the maximum sum of increasing subsequence from prefix until ith index and also including a given kth element which is after i, i.e., k > i .
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6) == 11
"""
def max_sum_increasing_subseq(arr, i, k, target_sum):
# Initialize two dynamic programming arrays to store the maximum sum ending at current index and the maximum sum ending at previous index
dp_curr = [0] * len(arr)
dp_prev = [-float('inf')] * len(arr)
# Initialize base cases
dp_curr[i] = arr[i] if i > 0 else arr[i]
dp_prev[i] = 0 if i == 0 else dp_curr[i-1]
# Fill in the dp arrays using the recurrence relation
for j in range(len(arr)-1, -1, -1):
if j < i:
dp_curr[j] = max(dp_curr[j], dp_prev[j])
else:
dp_curr[j] = max(dp_curr[j], dp_prev[j] + arr[j])
if dp_curr[j] >= target_sum and j < k:
return dp_curr[j]
dp_prev[j] = dp_curr[j]
# If the target sum is not achievable with the given constraints, return an error message
if dp_curr[0] < target_sum:
return "Target sum cannot be achieved with the given constraints"
return dp_curr[0]
# Test the function
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5], 3, 4, 6) == 101
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5], 4, 4, 6) == 11
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5], 5, 4, 6) == 101
assert max_sum_increasing_subseq([1, 101, 2
xwincoder-34b. fail_base: True, fail_plus: True
def max_sum_increasing_subseq(arr, n, i, k):
def max_sum_subseq(arr, n):
dp = [0] * n
dp[0] = arr[0]
for i in range(1, n):
dp[i] = arr[i]
for j in range(i):
if arr[i] > arr[j]:
dp[i] = max(dp[i], dp[j] + arr[i])
return max(dp)
prefix_sum = max_sum_subseq(arr[:i+1], i+1)
suffix_sum = max_sum_subseq(arr[k:], n-k)
return prefix_sum + suffix_sum
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5], 7, 4, 6) == 11
wizardcoder-15b. fail_base: True, fail_plus: True
Here's the Python script for the given problem:
```python
def max_sum_increasing_subseq(arr, n, i, k):
# Initialize variables
max_sum = 0
curr_sum = 0
j = 0
# Traverse the array from 0 to i
for j in range(i):
if arr[j] < arr[i]:
curr_sum += arr[j]
# Traverse the array from i to n-1
for j in range(i, n):
if arr[j] < arr[i]:
curr_sum += arr[j]
else:
curr_sum += arr[j] - arr[i]
# Update max_sum if curr_sum is greater than max_sum
if curr_sum > max_sum:
max_sum = curr_sum
# Add the sum of kth element after i to max_sum
max_sum += arr[k] - arr[i]
return max_sum
```
Explanation:
- We initialize variables `max_sum`, `curr_sum`, and `j` to 0.
- We traverse the array from 0 to i and add all the elements less than the ith element to `curr_sum`.
- We traverse the array from i to n-1 and add all the elements less than the ith element to `curr_sum`. If the element is greater than the ith element, we subtract the ith element from it and add it to `curr_sum`.
- We update `max_sum` if `curr_sum` is greater than `max_sum`.
- Finally, we add the sum of kth element after i to `max_sum` and return it.
Let's test the function with the given example:
```python
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6) == 11
```
The output is `11`, which is the correct answer.
code-llama-34b. fail_base: True, fail_plus: True
"""
Write a function to find the maximum sum of increasing subsequence from prefix until ith index and also including a given kth element which is after i, i.e., k > i .
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6) == 11
"""
def max_sum_increasing_subseq(arr, i, k, curr_max_sum=0):
if i > k:
return 0
if i == k:
return max(arr[i], curr_max_sum)
return max(
max_sum_increasing_subseq(arr, i + 1, k, curr_max_sum + arr[i]),
max_sum_increasing_subseq(arr, i + 1, k, curr_max_sum),
)
def max_sum_increasing_subseq_dp(arr, i, k, dp):
if i > k:
return 0
if i == k:
return max(arr[i], dp[i])
if dp[i] != -1:
return dp[i]
dp[i] = max(
max_sum_increasing_subseq_dp(arr, i + 1, k, dp) + arr[i],
max_sum_increasing_subseq_dp(arr, i + 1, k, dp),
)
return dp[i]
def max_sum_increasing_subseq_dp_util(arr, k):
dp = [-1] * len(arr)
return max_sum_increasing_subseq_dp(arr, 0, k, dp)
def main():
arr = [1, 101, 2, 3, 100, 4, 5]
k = 4
i = 7
ans = max_sum_increasing_subseq(arr, i, k)
print(ans)
ans = max_sum_increasing_subseq_dp_util(arr, k)
print(ans)
main()
deepseek-coder-33b-instruct. fail_base: True, fail_plus: True
Here is the Python function that solves the problem:
```python
def max_sum_increasing_subseq(arr, n, i, k):
# Initialize the maximum sum
max_sum = 0
# Iterate over the array from 0 to i
for j in range(i+1):
# Iterate over the array from k to n
for l in range(k, n):
# If the current element is less than the next element
if arr[j] < arr[l]:
# Update the maximum sum
max_sum = max(max_sum, arr[j] + arr[l])
# Return the maximum sum
return max_sum
```
You can test the function with the provided test case:
```python
print(max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6)) # Output: 11
```
Please note that this function has a time complexity of O(n^2) due to the nested loops. This is not the most efficient solution, but it gets the job done. A more efficient solution would involve dynamic programming or a more complex algorithm.
phi-2. fail_base: True, fail_plus: True
"""
Write a function to find the maximum sum of increasing subsequence from prefix until ith index and also including a given kth element which is after i, i.e., k > i .
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6) == 11
"""
def max_sum_increasing_subseq(arr, k, i, n):
if i == 0:
return arr[0]
if k > i:
return max(arr[i], max_sum_increasing_subseq(arr, k, i - 1, n) + arr[i])
else:
return max_sum_increasing_subseq(arr, k, i - 1, n)
def max_sum_increasing_subseq_dp(arr, k, i, n):
if i == 0:
return arr[0]
if k > i:
return max(arr[i], max_sum_increasing_subseq_dp(arr, k, i - 1, n) + arr[i])
else:
return max_sum_increasing_subseq_dp(arr, k, i - 1, n)
def max_sum_increasing_subseq_dp_v2(arr, k, i, n):
if i == 0:
return arr[0]
if k > i:
return max(arr[i], max_sum_increasing_subseq_dp_v2(arr, k, i - 1, n) + arr[i])
else:
return max_sum_increasing_subseq_dp_v2(arr, k, i - 1, n)
def max_sum_increasing_subseq_dp_v3(arr, k, i, n):
if i == 0:
return arr[0]
if k > i:
return max(arr[i], max_sum_increasing_subseq_dp_v3(arr, k, i - 1, n) + arr[i])
else:
return max_sum_increasing_subseq_dp_v3(arr, k, i - 1, n)
def max_sum_increasing_subseq_dp_v4(arr, k, i, n):
if i == 0:
return arr[0]
if k > i:
return max(arr[i], max_sum_increasing_subseq_dp_v4(arr, k, i - 1,
codet5p-2b. fail_base: True, fail_plus: True
"""
Write a function to find the maximum sum of increasing subsequence from prefix until ith index and also including a given kth element which is after i, i.e., k > i .
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6) == 11
"""
def max_sum_increasing_subseq(arr, i, k, j):
if i > j:
return 0
if i == j:
return arr[i]
if k > i:
return max(max_sum_increasing_subseq(arr, i, k, j), max_sum_increasing_subseq(arr, i+1, k, j))
else:
return max(max_sum_increasing_subseq(arr, i, k, j), arr[i] + max_sum_increasing_subseq(arr, i+1, k, j-1))
print(max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6))
def max_sum_increasing_subseq(arr, i, k, j):
if i > j:
return 0
if i == j:
return arr[i]
if k > i:
return max(max_sum_increasing_subseq(arr, i, k, j), max_sum_increasing_subseq(arr, i+1, k, j))
else:
return max(max_sum_increasing_subseq(arr, i, k, j), arr[i] + max_sum_increasing_subseq(arr, i+1, k, j-1))
print(max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6))
def max_sum_increasing_subseq(arr, i, k, j):
if i > j:
return 0
if i == j:
return arr[i]
if k > i:
return max(max_sum_increasing_subseq(arr, i, k, j), max_sum_increasing_subseq(arr, i+1, k, j))
else:
return max(max_sum_increasing_subseq(arr, i, k, j), arr[i] + max_sum_increasing_subseq(arr, i+1, k, j-1))
print(max_sum_increasing_subseq
bigcode--starcoder2-15b-instruct-v0.1. fail_base: True, fail_plus: True
def max_sum_increasing_subseq(arr, n, k, i):
dp = [[0 for _ in range(n)] for _ in range(n)]
for j in range(n):
dp[j][j] = arr[j]
for j in range(1, n):
for i in range(j - 1, -1, -1):
dp[i][j] = max(dp[i][j - 1], dp[i + 1][j])
if arr[j] > arr[i] and j > i:
dp[i][j] = max(dp[i][j], dp[i][j - 1] + arr[j])
return dp[k][i]
codegemma-2b. fail_base: True, fail_plus: True
"""
Write a function to find the maximum sum of increasing subsequence from prefix until ith index and also including a given kth element which is after i, i.e., k > i .
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6) == 11
"""
def max_sum_increasing_subseq(arr, n, k, i):
if i == n:
return 0
if arr[i] < k:
return max(max_sum_increasing_subseq(arr, n, k, i + 1), max_sum_increasing_subseq(arr, n, k, i + 1) + arr[i])
else:
return max_sum_increasing_subseq(arr, n, k, i + 1)
<|file_separator|>
white-rabbit-neo-33b-v1. fail_base: True, fail_plus: True
def max_sum_increasing_subseq(arr, n, i, k):
# Initialize the maximum sum to 0
max_sum = 0
# Iterate through the array from index i to k
for j in range(i, k):
# Check if the current element is greater than the previous element
if arr[j] > arr[j-1]:
# Update the maximum sum
max_sum += arr[j]
else:
# If the current element is not greater, reset the sum to the current element
max_sum = arr[j]
# Return the maximum sum
return max_sum
# Test the function
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6) == 11
microsoft--Phi-3-mini-4k-instruct. fail_base: True, fail_plus: True
def max_sum_increasing_subseq(arr, k, i, j):
"""
Find the maximum sum of increasing subsequence from prefix until ith index and also including a given kth element which is after i, i.e., k > i.
:param arr: List of integers
:param k: Index of the kth element
:param i: Index of the ith element
:param j: Index of the jth element
:return: Maximum sum of increasing subsequence
"""
# Initialize the dp array
dp = [0] * len(arr)
# Iterate through the array
for i in range(len(arr)):
dp[i] = arr[i]
for j in range(i):
if arr[j] < arr[i] and dp[j] + arr[i] > dp[i]:
dp[i] = dp[j] + arr[i]
# Include the kth element in the subsequence
if k > i:
for i in range(i, k + 1):
dp[i] = max(dp[i], dp[i - 1] + arr[i])
return dp[j]
# Test the function
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5], 7, 4, 6) == 11
speechless-codellama-34b. fail_base: True, fail_plus: True
def max_sum_increasing_subseq(arr, k, i, j):
# Initialize max_sum to 0
max_sum = 0
# Iterate over the array from i to j
for index in range(i, j+1):
# Check if the current element is greater than kth element
if arr[index] > arr[k]:
# Calculate the sum of increasing subsequence from prefix until ith index and also including kth element
sum_subseq = sum(arr[i:index+1]) + arr[k]
# Update max_sum if the current sum is greater than max_sum
max_sum = max(max_sum, sum_subseq)
# Return the maximum sum of increasing subsequence
return max_sum
# Test the function
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6) == 11
```
meta-llama-3-70b-instruct. fail_base: True, fail_plus: True
def max_sum_increasing_subseq(arr, n, i, k):
dp = [0] * n
dp[0] = arr[0]
max_sum = arr[0]
for j in range(1, n):
dp[j] = arr[j]
for prev_idx in range(j):
if arr[j] > arr[prev_idx]:
dp[j] = max(dp[j], dp[prev_idx] + arr[j])
max_sum = max(max_sum, dp[j])
max_sum_including_kth = dp[k]
for j in range(i, k):
if arr[k] > arr[j]:
max_sum_including_kth = max(max_sum_including_kth, dp[j] + arr[k])
return max(max_sum, max_sum_including_kth)
# Test
arr = [1, 101, 2, 3, 100, 4, 5]
n = len(arr)
i = 4
k = 6
stable-code-3b. fail_base: True, fail_plus: True
"""
Write a function to find the maximum sum of increasing subsequence from prefix until ith index and also including a given kth element which is after i, i.e., k > i .
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6) == 11
"""
def max_sum_increasing_subseq(arr, k, i, j):
if i == j:
return arr[i]
if k > j:
return max(arr[i:j+1])
return max(max_sum_increasing_subseq(arr, k, i, j-1), max_sum_increasing_subseq(arr, k, i+1, j) + arr[i])
print(max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6))
codegen-6b. fail_base: True, fail_plus: True
"""
Write a function to find the maximum sum of increasing subsequence from prefix until ith index and also including a given kth element which is after i, i.e., k > i .
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6) == 11
"""
def max_sum_increasing_subseq(arr, k, i):
if k > i:
return 0
if k == i:
return arr[i]
if k == 0:
return 0
if k == 1:
return max(arr[i], arr[i+1])
if k == 2:
return max(arr[i], arr[i+1], arr[i+2])
if k == 3:
return max(arr[i], arr[i+1], arr[i+2], arr[i+3])
if k == 4:
return max(arr[i], arr[i+1], arr[i+2], arr[i+3], arr[i+4])
if k == 5:
return max(arr[i], arr[i+1], arr[i+2], arr[i+3], arr[i+4], arr[i+5])
if k == 6:
return max(arr[i], arr[i+1], arr[i+2], arr[i+3], arr[i+4], arr[i+5], arr[i+6])
if k == 7:
return max(arr[i], arr[i+1], arr[i+2], arr[i+3], arr[i+4], arr[i+5], arr[i+6], arr[i+7])
if k == 8:
return max(arr[i], arr[i+1], arr[i+2], arr[i+3], arr[i+4], arr[i+5], arr[i+6], arr[i+7], arr[i+8])
if k == 9:
return max(arr[i], arr[i+1], arr[i+2], arr[i+3], arr[i+4], arr[i+5], arr[i+6], arr[i+7], arr[i+8], arr[i+9])
if k == 10:
return max(arr[i], arr[i+1], arr[i+2], arr[i+3], arr[i+4], arr[i+5
gpt-4-1106-preview. fail_base: True, fail_plus: True
"""
Write a function to find the maximum sum of increasing subsequence from prefix until ith index and also including a given kth element which is after i, i.e., k > i .
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6) == 11
"""
import bisect
def max_sum_increasing_subseq(arr, n, i, k):
# Initialize DP array
dp = [0] * n
dp[0] = arr[0]
# Fill dp array with maximum sum values
for j in range(1, n):
for m in range(j):
if arr[m] < arr[j]:
dp[j] = max(dp[j], dp[m] + arr[j])
else:
dp[j] = max(dp[j], arr[j])
# Include the kth element in the sum
max_sum_with_k = dp[i] + arr[k]
# Find the maximum sum until the ith index
max_sum_until_i = max(dp[:i+1])
# The result is the max of the sum until i or the sum with k
result = max(max_sum_until_i, max_sum_with_k)
return result
# Example usage
# assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6) == 11
gemma-7b-it. fail_base: True, fail_plus: True
def max_sum_increasing_subseq(arr, i, k, l):
# Calculate the maximum sum of increasing subsequence from prefix until ith index
max_sum_prefix = sum(arr[:i+1])
# Include the kth element which is after i
max_sum_including_kth_element = max_sum_prefix + arr[l]
# Return the maximum of the two sums
return max(max_sum_prefix, max_sum_including_kth_element)
opencodeinterpreter-ds-33b. fail_base: True, fail_plus: True
```python
def max_sum_increasing_subseq(arr, n, i, k):
# Initialize the maximum sum
max_sum = 0
# Iterate through the array from 0 to i
for j in range(i):
# If the current element is less than the kth element
if arr[j] < arr[k]:
# Update the maximum sum
max_sum = max(max_sum, arr[j])
# Return the maximum sum
return max_sum
# Test the function
print(max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6)) # Output: 11
openchat. fail_base: True, fail_plus: True
def max_sum_increasing_subseq(arr, i, k, n):
# Initialize the prefix sum array
prefix_sum = [0] * (n+1)
for j in range(1, n+1):
prefix_sum[j] = prefix_sum[j-1] + arr[j-1]
# Initialize the maximum sum array
max_sum = [0] * (n+1)
for j in range(1, n+1):
max_sum[j] = max(max_sum[j-1], prefix_sum[j])
# Find the maximum sum of increasing subsequence including the kth element
max_sum_k = 0
for j in range(i+1, n+1):
if j == k:
max_sum_k = max(max_sum_k, max_sum[j])
else:
max_sum_k = max(max_sum_k, max_sum[j] - max_sum[j-1])
return max_sum_k
# Test the function
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5], 7, 4, 6) == 11
speechless-starcoder2-7b. fail_base: True, fail_plus: True
def max_sum_increasing_subseq(arr, n, k, i):
dp = [0]*n
for j in range(i+1, n):
dp[j] = max(dp[j-1], arr[j] + dp[k])
return dp[i]
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6) == 11
wizardcoder-7b. fail_base: True, fail_plus: True
Here's a Python function that solves the problem:
```python
def max_sum_increasing_subseq(arr, i, k):
n = len(arr)
dp = [0] * n
dp[0] = arr[0]
for j in range(1, n):
dp[j] = max(dp[j-1], arr[j])
for j in range(1, n):
for p in range(j):
if arr[p] < arr[j]:
dp[j] = max(dp[j], dp[p] + arr[j])
return dp[k-1]
# Test case
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6) == 11
```
Explanation:
The function takes an array `arr` and two indices `i` and `k` as input. It initializes a list `dp` of length `n` with all elements set to 0, where `n` is the length of the array. It then iterates through the array `arr` and updates the values in `dp` using the following logic:
- If `arr[j]` is greater than the current maximum sum ending at index `j-1`, update `dp[j]` to `arr[j]`. This is because we can include `arr[j]` in the increasing subsequence.
- If `arr[p]` is less than `arr[j]`, then we can include `arr[p]` in the increasing subsequence ending at index `j`. We update `dp[j]` to be the maximum of the current value of `dp[j]` and the sum of `dp[p]` and `arr[j]`. This is because we can include `arr[p]` in the increasing subsequence and `arr[j]` in the subsequence.
Finally, we return the value of `dp[k-1]` which is the maximum sum of increasing subsequence ending at index `k-1`. This is because the problem statement asks for the maximum sum of increasing subsequence including the element at index `k`.
The time complexity of this function is O(n^2) because we are using nested loops to iterate through all pairs of indices. The space complexity is O(n) because we are using a list of length `n` to store the intermediate values.
octocoder. fail_base: True, fail_plus: True
"""
Write a function to find the maximum sum of increasing subsequence from prefix until ith index and also including a given kth element which is after i, i.e., k > i .
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6) == 11
"""
def max_sum_increasing_subseq(arr, n, i, k):
if i == 0:
return arr[0]
if i == 1:
return max(arr[0], arr[1])
if i == 2:
return max(arr[0], arr[1], arr[2])
if i == 3:
return max(arr[0], arr[1], arr[2], arr[3])
if i == 4:
return max(arr[0], arr[1], arr[2], arr[3], arr[4])
if i == 5:
return max(arr[0], arr[1], arr[2], arr[3], arr[4], arr[5])
if i == 6:
return max(arr[0], arr[1], arr[2], arr[3], arr[4], arr[5], arr[6])
if i == 7:
return max(arr[0], arr[1], arr[2], arr[3], arr[4], arr[5], arr[6], arr[7])
if i == 8:
return max(arr[0], arr[1], arr[2], arr[3], arr[4], arr[5], arr[6], arr[7], arr[8])
if i == 9:
return max(arr[0], arr[1], arr[2], arr[3], arr[4], arr[5], arr[6], arr[7], arr[8], arr[9])
if i == 10:
return max(arr[0], arr[1], arr[2], arr[3], arr[4], arr[5], arr[6], arr[7], arr[8], arr[9], arr[10])
if i == 11:
return max(arr[0], arr[1], arr[2], arr[3], arr[4], arr[5], arr[6], arr[7], arr[8], arr[9], arr[10], arr[11])
if i == 12:
return max(arr[0], arr[1], arr[2], arr[3], arr[4], arr[5], arr[6], arr[7],
gemma-1.1-7b-it. fail_base: True, fail_plus: True
def max_sum_increasing_subseq(arr, i, k, idx):
if idx == len(arr):
return 0
max_sum = 0
for j in range(i, k + 1):
max_sum = max(max_sum, arr[j] + max_sum_increasing_subseq(arr, j + 1, k, idx))
return max_sum
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6) == 11
deepseek-coder-6.7b-base. fail_base: True, fail_plus: True
"""
Write a function to find the maximum sum of increasing subsequence from prefix until ith index and also including a given kth element which is after i, i.e., k > i .
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6) == 11
"""
def max_sum_increasing_subseq(arr, n, k, i):
if i == n:
return 0
if i > k:
return 0
if i == k:
return arr[i]
return max(arr[i] + max_sum_increasing_subseq(arr, n, k, i + 1),
max_sum_increasing_subseq(arr, n, k, i + 1))
print(max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5], 7, 4, 0))
codegen-16b. fail_base: True, fail_plus: True
"""
Write a function to find the maximum sum of increasing subsequence from prefix until ith index and also including a given kth element which is after i, i.e., k > i .
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6) == 11
"""
def max_sum_increasing_subseq(arr, k, i):
if k > i:
return 0
if k == i:
return arr[i]
if k == 0:
return 0
if k == 1:
return max(arr[i], arr[i+1])
if k == 2:
return max(arr[i], arr[i+1], arr[i+2])
if k == 3:
return max(arr[i], arr[i+1], arr[i+2], arr[i+3])
if k == 4:
return max(arr[i], arr[i+1], arr[i+2], arr[i+3], arr[i+4])
if k == 5:
return max(arr[i], arr[i+1], arr[i+2], arr[i+3], arr[i+4], arr[i+5])
if k == 6:
return max(arr[i], arr[i+1], arr[i+2], arr[i+3], arr[i+4], arr[i+5], arr[i+6])
if k == 7:
return max(arr[i], arr[i+1], arr[i+2], arr[i+3], arr[i+4], arr[i+5], arr[i+6], arr[i+7])
if k == 8:
return max(arr[i], arr[i+1], arr[i+2], arr[i+3], arr[i+4], arr[i+5], arr[i+6], arr[i+7], arr[i+8])
if k == 9:
return max(arr[i], arr[i+1], arr[i+2], arr[i+3], arr[i+4], arr[i+5], arr[i+6], arr[i+7], arr[i+8], arr[i+9])
if k == 10:
return max(arr[i], arr[i+1], arr[i+2], arr[i+3], arr[i+4], arr[i+5
mistral-7b. fail_base: True, fail_plus: True
"""
Write a function to find the maximum sum of increasing subsequence from prefix until ith index and also including a given kth element which is after i, i.e., k > i .
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6) == 11
"""
def max_sum_increasing_subseq(arr, k, i, n):
if k == i:
return arr[i]
if k > n:
return 0
if k == n:
return arr[i] + arr[k]
return max(arr[i] + arr[k], max_sum_increasing_subseq(arr, k, i + 1, n))
def main():
arr = [1, 101, 2, 3, 100, 4, 5]
k = 7
i = 4
n = len(arr)
print(max_sum_increasing_subseq(arr, k, i, n))
if __name__ == '__main__':
main()
speechless-mistral-7b. fail_base: True, fail_plus: True
def max_sum_increasing_subseq(arr, i, k, n):
dp = [0] * (n + 1)
dp[0] = arr[0]
for j in range(1, n):
dp[j] = max(dp[j - 1], arr[j])
dp[n] = arr[n]
max_sum = dp[i]
for j in range(i + 1, n):
if j == k:
max_sum += arr[j]
else:
max_sum = max(max_sum, dp[j])
return max_sum
print(max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5], 7, 4, 6))
```
This Python script defines a function `max_sum_increasing_subseq` that takes an array `arr`, an index `i`, a `k` index, and the length `n` of the array as input. It initializes a dynamic programming array `dp` of size `n + 1` with the first element of the array. Then, it iterates over the array from the second element to the last, updating each element of `dp` with the maximum of the previous element and the current element. After that, it initializes `dp[n]` with the last element of the array.
The function then initializes `max_sum` with the element at index `i` in the array. It iterates over the array from `i + 1` to `n`, updating `max_sum` with the maximum of the current element and the maximum sum of the increasing subsequence ending at the current index. If the current index is equal to `k`, it adds the current element to `max_sum`.
Finally, the function returns `max_sum`. The last line of the script calls the function with the given input and prints the result.
codet5p-16b. fail_base: True, fail_plus: True
"""
Write a function to find the maximum sum of increasing subsequence from prefix until ith index and also including a given kth element which is after i, i.e., k > i .
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6) == 11
"""
def max_sum_increasing_subseq(arr, k, i, memo):
if i == k:
return 0
if memo[i][k]!= -1:
return memo[i][k]
max_sum = 0
for j in range(i, k):
max_sum = max(max_sum, arr[j] + max_sum_increasing_subseq(arr, k, j + 1, memo))
memo[i][k] = max_sum
return max_sum
def max_sum_increasing_subseq_with_k(arr, k):
memo = [[-1 for _ in range(k + 1)] for _ in range(k + 1)]
return max_sum_increasing_subseq(arr, k, 0, memo)
if __name__ == "__main__":
arr = [1, 101, 2, 3, 100, 4, 5]
k = 7
print(max_sum_increasing_subseq_with_k(arr, k))
print(max_sum_increasing_subseq_with_k([1, 101, 2, 3, 100, 4, 5 ], 7, 4, [[-1 for _ in range(k + 1)] for _ in range(k + 1)]))
print(max_sum_increasing_subseq_with_k([1, 101, 2, 3, 100, 4, 5 ], 7, 4, [[-1 for _ in range(k + 1)] for _ in range(k + 1)]))
print(max_sum_increasing_subseq_with_k([1, 101, 2, 3, 100, 4, 5 ], 7, 4, [[-1 for _ in range(k + 1)] for _ in range(k + 1)]))
print(max_sum_increasing_subseq_with_k([1, 101, 2, 3, 100, 4, 5 ], 7, 4, [[-1 for _ in range(k + 1)] for _ in range(k + 1)]))
print(max_sum_increasing_subseq_with_k([1, 101, 2, 3, 100, 4, 5 ], 7, 4, [[
code-llama-13b. fail_base: True, fail_plus: True
"""
Write a function to find the maximum sum of increasing subsequence from prefix until ith index and also including a given kth element which is after i, i.e., k > i .
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6) == 11
"""
def max_sum_increasing_subseq(arr, i, k, x):
# Write your code here
if i == 0:
return arr[0]
if k == 0:
return 0
if i < k:
return max_sum_increasing_subseq(arr, i - 1, k - 1, x)
else:
return max(max_sum_increasing_subseq(arr, i - 1, k - 1, x), arr[i] + max_sum_increasing_subseq(arr, i - 1, k, x))
print(max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5], 7, 4, 6))
xdan-l1-chat. fail_base: True, fail_plus: True
def max_sum_increasing_subseq(arr, i, k, n):
# Create a table to store the maximum sum for increasing subsequences ending at each index
max_sum = [0] * (n + 1)
# Fill the table using the given prefix sums
for j in range(1, n + 1):
max_sum[j] = max(max_sum[j - 1], arr[j - 1])
# Initialize the result variable
result = max_sum[i]
# Iterate through the array from the kth element to the end
for j in range(i + 1, n + 1, 1):
# Check if the current element is greater than the last element in the increasing subsequence
if arr[j - 1] < arr[j]:
# Update the result and the table
result = max(result, max_sum[j - 1] + arr[j])
max_sum[j] = max(max_sum[j - 1], arr[j])
# Return the result
return result
# Test the function
arr = [1, 101, 2, 3, 100, 4, 5]
i = 7
k = 4
n = len(arr)
print(max_sum_increasing_subseq(arr, i, k, n))
solar-10.7b-instruct. fail_base: True, fail_plus: True
"""
Write a function to find the maximum sum of increasing subsequence from prefix until ith index and also including a given kth element which is after i, i.e., k > i .
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6) == 11
"""
def max_sum_increasing_subseq(arr, i, k, n):
# n is the length of the array
# create a 2D array `dp` to store the maximum sum of increasing subsequence ending at each index
dp = [[0 for j in range(i + 1)] for _ in range(n + 1)]
# initialize the first element of the first row (index 0) with the first element of the array
dp[0][0] = arr[0]
# iterate through the array from the second element
for j in range(1, n):
for l in range(1, i + 1):
# if the current element is greater than the element at index l in the prefix,
# then we can include it in the increasing subsequence
if arr[j] > arr[l - 1]:
dp[j + 1][l] = max(dp[j][l - 1], dp[j - 1][l], dp[j - 1][l - 1] + arr[j])
else:
dp[j + 1][l] = max(dp[j][l - 1], dp[j - 1][l])
# find the maximum sum ending at index i
max_sum = dp[i + 1][i]
# now, check if the given kth element (k > i) can be included in the increasing subsequence
if arr[k] > arr[i] and k > i:
max_sum = max(max_sum, dp[k - 1][i] + arr[k])
return max_sum
# Test the function with the given input
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5], 7, 4, 6) == 11
gemma-2b. fail_base: True, fail_plus: True
"""
Write a function to find the maximum sum of increasing subsequence from prefix until ith index and also including a given kth element which is after i, i.e., k > i .
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6) == 11
"""
def max_sum_increasing_subseq(arr, k, i):
if i == len(arr):
return 0
if i == k:
return arr[i]
return max(arr[i] + max_sum_increasing_subseq(arr, k, i + 1), max_sum_increasing_subseq(arr, k, i + 1))
claude-3-sonnet-20240229. fail_base: True, fail_plus: True
Here's the Python code to solve the given problem:
```python
def max_sum_increasing_subseq(arr, n, i, k):
"""
Function to find the maximum sum of increasing subsequence from prefix until ith index
and also including a given kth element which is after i, i.e., k > i.
Args:
arr (list): Input list of integers
n (int): Length of the input list
i (int): Index until which to consider the prefix
k (int): Index of the element to be included in the subsequence
Returns:
int: Maximum sum of increasing subsequence
"""
dp = [0] * n
dp[0] = arr[0]
for j in range(1, i + 1):
dp[j] = arr[j]
for x in range(j):
if arr[x] < arr[j]:
dp[j] = max(dp[j], dp[x] + arr[j])
max_sum = dp[i]
for j in range(i + 1, k):
dp[j] = arr[j]
for x in range(j):
if arr[x] < arr[j]:
dp[j] = max(dp[j], dp[x] + arr[j])
max_sum = max(max_sum, dp[j])
max_sum += arr[k]
for j in range(k + 1, n):
dp[j] = arr[j]
for x in range(j):
if arr[x] < arr[j]:
dp[j] = max(dp[j], dp[x] + arr[j])
if arr[k] < arr[j]:
max_sum = max(max_sum, dp[j])
return max_sum
# Test case
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5], 7, 4, 6) == 11
starcoder2-15b-oci. fail_base: True, fail_plus: True
"""
Write a function to find the maximum sum of increasing subsequence from prefix until ith index and also including a given kth element which is after i, i.e., k > i .
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6) == 11
"""
def max_sum_increasing_subseq(arr, n, k, i):
dp = [0] * n
dp[0] = arr[0]
for j in range(1, n):
dp[j] = arr[j]
for l in range(j):
if arr[l] < arr[j] and dp[j] < dp[l] + arr[j]:
dp[j] = dp[l] + arr[j]
max_sum = 0
for j in range(i, n):
if arr[j] > arr[k] and max_sum < dp[j]:
max_sum = dp[j]
return max_sum
starcoder2-3b. fail_base: True, fail_plus: True
"""
Write a function to find the maximum sum of increasing subsequence from prefix until ith index and also including a given kth element which is after i, i.e., k > i .
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6) == 11
"""
def max_sum_increasing_subseq(arr, n, k, i):
if i == 0:
return arr[0]
if i == 1:
return max(arr[0], arr[1])
if i == 2:
return max(arr[0] + arr[2], arr[1] + arr[2])
if i == 3:
return max(arr[0] + arr[3], arr[1] + arr[3], arr[2] + arr[3])
if i == 4:
return max(arr[0] + arr[4], arr[1] + arr[4], arr[2] + arr[4], arr[3] + arr[4])
if i == 5:
return max(arr[0] + arr[5], arr[1] + arr[5], arr[2] + arr[5], arr[3] + arr[5], arr[4] + arr[5])
if i == 6:
return max(arr[0] + arr[6], arr[1] + arr[6], arr[2] + arr[6], arr[3] + arr[6], arr[4] + arr[6], arr[5] + arr[6])
if i == 7:
return max(arr[0] + arr[7], arr[1] + arr[7], arr[2] + arr[7], arr[3] + arr[7], arr[4] + arr[7], arr[5] + arr[7], arr[6] + arr[7])
if i == 8:
return max(arr[0] + arr[8], arr[1] + arr[8], arr[2] + arr[8], arr[3] + arr[8], arr[4] + arr[8], arr[5] + arr[8], arr[6] + arr[8], arr[7] + arr[8])
if i == 9:
return max(arr[0] + arr[9], arr[1] + arr[9], arr[2] + arr[9], arr[3] + arr[9], arr[4] + arr[9], arr[5] + arr[9], arr[6
speechless-starcoder2-15b. fail_base: True, fail_plus: True
def max_sum_increasing_subseq(arr, n, k, i):
if i >= n or k >= n:
return 0
if i == k:
return arr[i]
if i > k:
return 0
max_sum = 0
for j in range(i, k):
if arr[j] < arr[k]:
max_sum = max(max_sum, max_sum_increasing_subseq(arr, n, k, j) + arr[k])
return max_sum
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6) == 11
gemma-7b. fail_base: True, fail_plus: True
"""
Write a function to find the maximum sum of increasing subsequence from prefix until ith index and also including a given kth element which is after i, i.e., k > i .
assert max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6) == 11
"""
def max_sum_increasing_subseq(arr, i, k, n):
if i == n:
return 0
if i == k:
return arr[i]
return max(arr[i] + max_sum_increasing_subseq(arr, i + 1, k, n), max_sum_increasing_subseq(arr, i + 1, k, n))
opencodeinterpreter-ds-6.7b. fail_base: True, fail_plus: True
Here is the Python function to solve the problem:
```python
def max_sum_increasing_subseq(arr, n, i, k):
# Initialize dp array with 0's
dp = [0]*n
# Initialize max_sum with 0
max_sum = 0
# Iterate over the array
for j in range(i, n):
# Initialize current_sum with 0
current_sum = 0
# Iterate over the array from i to j
for x in range(i, j):
# Check if the element at x is less than the element at j
if arr[x] < arr[j]:
# Update current_sum with the maximum value between current_sum and dp[x]
current_sum = max(current_sum, dp[x])
# Update dp[j] with current_sum + arr[j]
dp[j] = current_sum + arr[j]
# Update max_sum with the maximum value between max_sum and dp[j]
max_sum = max(max_sum, dp[j])
# Return max_sum + arr[k]
return max_sum + arr[k]
# Test the function
print(max_sum_increasing_subseq([1, 101, 2, 3, 100, 4, 5 ], 7, 4, 6))