"""
Write a function to find the sum of the largest contiguous sublist in the given list.
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
"""
def max_sub_array_sum(a, size):
max_so_far = 0
max_ending_here = 0
for i in range(0, size):
max_ending_here = max_ending_here + a[i]
if max_ending_here < 0:
max_ending_here = 0
elif (max_so_far < max_ending_here):
max_so_far = max_ending_here
return max_so_far
[[[-2, -3, 4, -1, -2, 1, 5, -3], 8], [[-3, -4, 5, -2, -3, 2, 6, -4], 8], [[-4, -5, 6, -3, -4, 3, 7, -5], 8]]
[[[], 0], [[-10, -5, -3, -2, -1], 5], [[-100, -50, -30, -20, -10, 5, -3, -2, -1], 9], [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 10], [[-1000, -900, -800, -700, -600, -500, -400, 1000, 900, 800, 700, 600, 500, 400], 14], [[1000, 900, 800, 700, 600, -1000, -900, -800, -700, -600], 10], [[100, -100, 200, -200, 300, -300, 400, -400, 500, -500], 10], [[-100, 200, -300, 400, -500, 600, -700, 800, -900, 1000], 10], [[-10, -9, -8, -7, -6, -5, -4, -3, -2, -1], 10], [[14, -9, -8, -7, -6, -5, -4, -3, -2, -1], 10], [[-100, -50, -30, -20, -10, 5, -3, -2, -7], -1], [[-10, -9, -8, -7, -6, -5, -4, -3, -2, -1], -1], [[-1000, -5, -900, -800, -700, -600, -500, -400, 900, 800, 700, 600, 500, 400], 14], [[-100, -50, -30, -20, -10, 5, -3, -2, -7], -800], [[-100, -50, -30, -20, -10, 5, -3, -2, -7], 0], [[-100, -50, -30, -20, -10, 5, -3, -2, -7, -30], -7], [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 9], [[1000, 900, 800, 700, 600, -1000, -900, -800, -700, -600], 9], [[-1000, -900, -800, -700, -600, -500, -400, 1000, 900, 800, 700, 600, 500, 400], -800], [[900, 800, 700, 600, -1000, -900, -800, -700, -600], 9], [[-1000, -900, -800, -700, -600, -500, -400, 1000, 900, 400, 800, 700, 600, 500, 400], -800], [[-10, -9, -8, -7, -6, -5, -4, -3, -2, -1], -600], [[1000, 900, 800, 600, -1000, -900, -800, -700, -600], 9], [[1000, 900, 800, 700, -400, -1000, -900, -800, -700, -600], 9], [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], -20], [[-1000, -800, -700, -600, -500, -400, 1000, 900, 400, 800, 700, 600, 500, 400, 600], -800], [[-10, -9, -8, -7, -6, -5, -4, -3, -2, -1], 9], [[-100, -50, -30, -21, -10, 5, -3, -2, -7], -800], [[-1000, -900, -800, -700, -600, -500, -400, 1000, 900, 800, 700, 600, 500, 400], -1000], [[-10, -9, -8, -7, -6, -5, -4, 9, -2, -1], -600], [[14, -9, -8, -7, -6, -5, -4, -3, -2, -1], 9], [[-10, -9, -8, -7, -6, -5, -4, 9, -2], -601], [[14, -9, -8, -7, -6, -5, -4, -3, -2, -1], -400], [[-10, -9, -8, -7, -6, -5, -4, 9, -2], -1], [[-100, -50, -30, -20, -10, 5, -3, -2, -7, -30], -6], [[1000, 900, 800, 700, 600, -1000, -900, -800, -700, -600, 1000], 10], [[-1000, -800, -700, -600, -500, -400, 1000, 900, 400, 800, 700, 600, 500, 400, 600], -801], [[14, -9, -8, -7, -6, -5, -2, -4, -3, -2, -1], 10], [[-10, -9, -8, -7, -6, -5, -4, 9, -2, -5], -1], [[14, -9, -8, -7, -6, -5, -4, -3, -2, -1], -30], [[1000, 900, 800, 700, 600, -1000, -900, -800, -700, -599], -400], [[-1000, -900, -800, -700, -600, -500, -400, 1000, 900, 800, 700, 600, 500, 400, 500], 14], [[14, -9, -8, -7, -6, -5, -4, -3, -2, -1], 8], [[-100, -50, -30, -20, -10, 5, -3, -2, -7], -799], [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], -3], [[-100, -50, -30, -21, 5, -3, -2, -7, -2], -800], [[14, -50, -30, -20, -10, 5, -3, -2, -1], 9], [[-100, -31, -50, -30, -21, -10, 5, -3, -2, -7], -1000], [[-10, -9, -8, -7, -6, -5, -4, 9, -2], 0], [[-100, -50, -30, -21, -10, 5, -3, -2, 400], -4], [[14, -9, -8, -7, 14, -6, -5, -4, -3, -2, -1], 8], [[-100, -50, -30, -21, -10, 4, -3, -2, 400], -4], [[14, -50, -30, -20, -10, -9, 5, -3, -2, -1, -20], 9], [[14, -9, -8, -7, -6, -5, -2, -4, -3, -2, -1, -9, 14], 10], [[-1000, -900, -800, -700, -600, -500, -400, 1000, 900, 800, 700, 600, 500, 400, 1000], -1000], [[-2, -3, -4, -5, -6, -7, -8, -8, -10], -20], [[-10, -9, -8, -7, -6, -5, -4, 9, -2, -9], 0], [[14, -9, -8, -7, -6, -1, -5, -2, -4, -3, -2, -1, -9, 14], 9], [[-100, -50, -21, -10, 5, -3, -2, 400], -4], [[-100, -50, -30, -21, 5, -3, -2, -599, -2], -50], [[900, 800, 700, 600, -1000, -900, -800, -700, -600, -1000], 9], [[-2, -3, -200, -5, -6, -8, -8, -10], -21], [[-100, -50, -30, -20, -10, 5, -3, -2, -700, -7], 0], [[-10, -9, -8, -7, -6, -5, -4, -3, -2, -1], -601], [[-100, -30, -21, 5, -3, -2, -7, -2], -800], [[-100, -50, -30, -20, -10, 5, -3, -2, -31, -7], -1], [[900, -4, 700, 600, -1000, -900, -799, -800, -700, -500, -600], 10], [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -5, -10], -9], [[-100, -50, -6, -30, -20, -10, 5, -3, -2, -7], -1], [[-1, -3, -4, -5, -6, -7, -8, -9, -10], -3], [[-100, -50, -30, -20, -10, -11, 5, -3, -2, -7], 0], [[-1, -3, -4, -6, -7, -8, -9, -10, -10], -500], [[14, -9, -8, -7, 14, -6, -5, -4, -3, -2, -1, -6], 8], [[-100, -50, -30, -20, -10, 5, -3, -2, -7, -50], 0], [[-100, -50, -30, -20, 5, -10, 5, -3, -2, -7], -32], [[-100, -50, -30, -20, -10, -11, 5, -3, -2, -7, -30], 0], [[1000, 900, -300, 600, -1000, -900, -800, -700, -600], 9], [[-1000, -900, -800, -700, -600, -500, -400, 1000, 900, 800, 700, 600, 500, 400], -400], [[-2, -2, -200, -5, -6, -8, -8, -10], -21], [[-900, -900, -800, -700, -600, -500, -400, 1000, 900, 800, 700, 600, 500, 400], -300], [[-100, -31, -50, -30, -21, -10, -599, -3, -2, -7], -1000], [[14, -9, -8, -7, -6, -1, -5, -2, -4, -3, -2, -1, -9, 14, -7], 9], [[-1000, -900, -700, -600, -500, -400, 1000, 900, 800, 700, 600, 399, 500, 400], 14], [[100, -100, 200, -200, 300, 5, -300, 400, -400, 500, -500], 10], [[-10, -9, -8, -7, -6, -5, -4, -3, -2, -1], -50], [[-100, -31, -30, -20, -10, -11, 5, -3, -2, -7, -30], 0], [[-100, -31, -11, -50, -30, -21, -10, -599, -3, -2, -7], -1000], [[-1000, -900, -800, -700, -600, -500, -400, 1000, 900, 400, 800, 700, 600, 500, 400], -801], [[14, -9, -8, -7, -7, -5, -4, -3, -2, -1], 10], [[1000, 900, 800, 700, -801, 600, -1000, -900, -800, -700, -600], 9], [[-100, -50, -10, -30, -20, -10, 5, -3, -2, -7], -800], [[14, -50, -30, -20, -10, -9, -10, 5, -3, -2, -1, -20], 9], [[14, -9, -8, -7, 14, -6, -5, -4, -3, -2, -1, -6], 9], [[-10, -9, -8, -7, -6, -5, -4, 600, -2, -1], -400], [[100, -100, 200, -200, 300, -300, 400, 501, -400, 500, -500], 10], [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -8], 9], [[14, -9, -8, -7, -6, -5, -2, -4, -3, -2, -1, -9, 14], 9], [[-1000, -900, -800, -700, -600, -500, -400, 1000, 900, 800, 700, 600, 500, 400, 500], -21], [[-1, -2, -4, -5, -6, -7, -8, -9, -10], -20], [[14, -9, -8, -7, 900, 14, -6, -5, -4, -3, -2, -1], -31], [[1000, 900, 800, 700, 600, -1000, -900, -800, -700, -600], -300], [[-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, -10], 9], [[14, -9, -8, -7, -7, -5, -4, -3, -2, -1, -7], 10], [[-100, -50, -30, -20, -10, 5, -3, -2, -1], 8], [[-100, -31, -11, -50, -30, -21, -10, -3, -2, -7], -1000], [[-1, -2, -4, -5, -3, -6, -7, -8, -10], -20], [[-100, -9, -8, -7, -6, -1, -5, -2, -4, -3, -2, -1, -9, 14], 9], [[-1, -2, -3, -4, -5, -6, -8, -9, -10], -20], [[-10, -9, -8, -7, -6, -5, -4, 600, -2, -1], -401]]
code-llama-multi-7b. fail_base: True, fail_plus: True
"""
Write a function to find the sum of the largest contiguous sublist in the given list.
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
"""
def max_sub_array_sum(arr, k):
"""
:param arr: list of integers
:param k: integer
:return: integer
"""
if not arr:
return 0
if k > len(arr):
return 0
if k == len(arr):
return sum(arr)
max_sum = 0
for i in range(len(arr)):
if i + k > len(arr):
break
sub_sum = sum(arr[i:i + k])
if sub_sum > max_sum:
max_sum = sub_sum
return max_sum
if __name__ == '__main__':
print(max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8))
print(max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 3))
print(max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 1))
print(max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 0))
print(max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 10))
print(max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 100))
print(max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 1000))
print(max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 10000))
print(max_sub_array_sum([-2, -3,
databricks--dbrx-instruct. fail_base: True, fail_plus: True
def max_sub_array_sum(arr, required_sum):
"""
This function finds the sum of the largest contiguous sublist in the given list.
:param arr: list of integers
:param required_sum: integer
:return: integer
"""
max_sum = 0
current_sum = 0
for num in arr:
current_sum += num
if current_sum > max_sum:
max_sum = current_sum
if current_sum < 0:
current_sum = 0
return max_sum if max_sum >= required_sum else required_sum
CohereForAI--c4ai-command-r-plus. fail_base: True, fail_plus: True
def max_sub_array_sum(nums, max_len):
if not nums:
return 0
max_sum = current_sum = nums[0]
current_len = 1
for num in nums[1:]:
if current_len + 1 <= max_len:
current_sum += num
current_len += 1
if current_sum > max_sum:
max_sum = current_sum
elif current_len < max_len:
current_sum = current_sum - nums[current_len - 1] + num
current_len += 1
else:
current_sum = num
current_len = 1
return max_sum if current_len <= max_len else 0
```
claude-3-haiku-20240307. fail_base: False, fail_plus: True
Here's the solution wrapped in a Python markdown block:
```python
def max_sub_array_sum(arr, n):
"""
Find the sum of the largest contiguous sublist in the given list.
Args:
arr (list): The input list.
n (int): The length of the list.
Returns:
int: The sum of the largest contiguous sublist.
"""
max_sum = arr[0]
current_sum = arr[0]
for i in range(1, n):
current_sum = max(arr[i], current_sum + arr[i])
max_sum = max(max_sum, current_sum)
return max_sum
# Test the function
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
code-millenials-34b. fail_base: False, fail_plus: True
def max_sub_array_sum(arr, n):
max_sum = float('-inf')
current_sum = 0
for i in range(n):
current_sum = max(arr[i], current_sum + arr[i])
max_sum = max(max_sum, current_sum)
return max_sum
print(max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8))
dolphin-2.6. fail_base: False, fail_plus: True
"""
Write a function to find the sum of the largest contiguous sublist in the given list.
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
"""
def max_sub_array_sum(arr, n):
if n <= 0:
return 0
if n == 1:
return max(arr)
max_sum = float('-inf')
curr_sum = 0
for i in range(n):
curr_sum += arr[i]
if curr_sum > max_sum:
max_sum = curr_sum
if curr_sum < 0:
curr_sum = 0
return max_sum
claude-3-opus-20240229. fail_base: False, fail_plus: True
Here's the solution to find the sum of the largest contiguous sublist in the given list, wrapped in a Python markdown block:
```python
def max_sub_array_sum(arr, n):
max_sum = float('-inf')
current_sum = 0
for i in range(n):
current_sum = max(arr[i], current_sum + arr[i])
max_sum = max(max_sum, current_sum)
return max_sum
# Test the function
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
mixtral-8x7b-instruct. fail_base: False, fail_plus: True
def max_sub_array_sum(arr, n):
# Initialize variables
max_sum = arr[0]
current_sum = arr[0]
# Iterate through the array
for i in range(1, n):
# Update the current sum by either including the current element or starting a new sum
current_sum = max(arr[i], current_sum + arr[i])
# Update the maximum sum if the current sum is greater
max_sum = max(max_sum, current_sum)
# Return the maximum sum
return max_sum
# Test the function
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
wizardcoder-34b. fail_base: False, fail_plus: True
Here's a possible solution:
def max_sub_array_sum(arr, target_sum):
max_sum = float('-inf')
current_sum = 0
for num in arr:
current_sum += num
if current_sum > max_sum:
max_sum = current_sum
if current_sum < 0:
current_sum = 0
return max_sum
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
Explanation:
We initialize `max_sum` to negative infinity and `current_sum` to zero. We then iterate through each number in the list `arr`. We add each number to `current_sum` and check if it's greater than `max_sum`. If it is, we update `max_sum` to be the new value of `current_sum`. If `current_sum` becomes negative, we reset it to zero because we want to start over with a new sublist that might have a larger sum. Finally, we return `max_sum`. In the given example, the largest contiguous sublist is [4, -1, -2, 1, 5], which has a sum of 7.
mixtral-8x22b-instruct-v0.1. fail_base: True, fail_plus: True
def max_sub_array_sum(nums, n):
"""
This function finds the sum of the largest contiguous sublist in the given list.
:param nums: list of integers
:param n: length of the sublist
:return: maximum sum of a contiguous sublist of length n
"""
if len(nums) < n:
raise ValueError("The length of the list is less than the given length of the sublist.")
max_sum = sum(nums[:n])
window_sum = max_sum
for i in range(n, len(nums)):
window_sum = window_sum - nums[i - n] + nums[i]
max_sum = max(max_sum, window_sum)
return max_sum
# Test the function
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
code-llama-multi-34b. fail_base: False, fail_plus: True
"""
Write a function to find the sum of the largest contiguous sublist in the given list.
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
"""
def max_sub_array_sum(arr, k):
"""
:param arr: list of integers
:param k: integer
:return: integer
"""
max_sum = 0
for i in range(len(arr)):
temp_sum = 0
for j in range(i, len(arr)):
temp_sum += arr[j]
if temp_sum > max_sum:
max_sum = temp_sum
return max_sum
def max_sub_array_sum_2(arr, k):
"""
:param arr: list of integers
:param k: integer
:return: integer
"""
max_sum = 0
for i in range(len(arr)):
temp_sum = 0
for j in range(i, len(arr)):
temp_sum += arr[j]
if temp_sum > max_sum:
max_sum = temp_sum
return max_sum
def max_sub_array_sum_3(arr, k):
"""
:param arr: list of integers
:param k: integer
:return: integer
"""
max_sum = 0
for i in range(len(arr)):
temp_sum = 0
for j in range(i, len(arr)):
temp_sum += arr[j]
if temp_sum > max_sum:
max_sum = temp_sum
return max_sum
def max_sub_array_sum_4(arr, k):
"""
:param arr: list of integers
:param k: integer
:return: integer
"""
max_sum = 0
for i in range(len(arr)):
temp_sum = 0
for j in range(i, len(arr)):
temp_sum += arr[j]
if temp_sum > max_sum:
max_sum = temp_sum
return max_sum
def max_sub_array_sum_5(arr, k):
"""
:param arr:
Qwen--Qwen1.5-72B-Chat. fail_base: False, fail_plus: True
def max_sub_array_sum(arr, max_sum):
current_sum = max_sum = arr[0]
for num in arr[1:]:
current_sum = max(num, current_sum + num)
max_sum = max(max_sum, current_sum)
return max_sum
# Test case
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
mistral-large-latest. fail_base: False, fail_plus: True
Sure, here is the Python code to solve the problem:
```python
def max_sub_array_sum(arr, size):
max_so_far = arr[0]
curr_max = arr[0]
for i in range(1, size):
curr_max = max(arr[i], curr_max + arr[i])
max_so_far = max(max_so_far, curr_max)
return max_so_far
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], len([-2, -3, 4, -1, -2, 1, 5, -3])) == 7
```
This code uses Kadane's algorithm to find the maximum sum of a contiguous subarray within a one-dimensional array of numbers. The algorithm maintains two variables, `max_so_far` and `curr_max`. `max_so_far` is the maximum sum of contiguous subarray found so far and `curr_max` is the maximum sum of contiguous subarray ending at the current position. The algorithm iterates through the array and at each position, it updates `curr_max` and `max_so_far`. The maximum sum of a contiguous subarray ending at the current position is the maximum of the current element and the sum of `curr_max` and the current element. The maximum sum of a contiguous subarray found so far is the maximum of `max_so_far` and `curr_max`.
codegen-2b. fail_base: True, fail_plus: True
"""
Write a function to find the sum of the largest contiguous sublist in the given list.
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
"""
def max_sub_array_sum(arr, n):
max_sum = 0
curr_sum = 0
for i in range(n):
curr_sum += arr[i]
if curr_sum > max_sum:
max_sum = curr_sum
return max_sum
def max_sub_array_sum_2(arr, n):
max_sum = 0
curr_sum = 0
for i in range(n):
curr_sum += arr[i]
if curr_sum > max_sum:
max_sum = curr_sum
return max_sum
def max_sub_array_sum_3(arr, n):
max_sum = 0
curr_sum = 0
for i in range(n):
curr_sum += arr[i]
if curr_sum > max_sum:
max_sum = curr_sum
return max_sum
def max_sub_array_sum_4(arr, n):
max_sum = 0
curr_sum = 0
for i in range(n):
curr_sum += arr[i]
if curr_sum > max_sum:
max_sum = curr_sum
return max_sum
def max_sub_array_sum_5(arr, n):
max_sum = 0
curr_sum = 0
for i in range(n):
curr_sum += arr[i]
if curr_sum > max_sum:
max_sum = curr_sum
return max_sum
def max_sub_array_sum_6(arr, n):
max_sum = 0
curr_sum = 0
for i in range(n):
curr_sum += arr[i]
if curr_sum > max_sum:
max_sum = curr_sum
return max_sum
def max_sub_array_sum_7(arr, n):
max_sum = 0
curr_sum = 0
for
HuggingFaceH4--starchat2-15b-v0.1. fail_base: True, fail_plus: True
def max_sub_array_sum(nums, k):
"""
Write a function to find the sum of the largest contiguous sublist in the given list.
"""
max_sum = float('-inf')
current_sum = 0
for num in nums:
current_sum = max(num, current_sum + num)
max_sum = max(max_sum, current_sum)
return max_sum if max_sum <= k else "Sum exceeds the limit."
# Test the function
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
assert max_sub_array_sum([1, 2, 3, 4, 5], 10) == 15
assert max_sub_array_sum([1, 2, 3, 4, 5], 15) == "Sum exceeds the limit."
codegemma-7b. fail_base: False, fail_plus: False
"""
Write a function to find the sum of the largest contiguous sublist in the given list.
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
"""
import time
import random
def max_sub_array_sum(arr, n):
max_sum = 0
for i in range(n):
for j in range(i, n):
curr_sum = sum(arr[i:j + 1])
if curr_sum > max_sum:
max_sum = curr_sum
return max_sum
def max_sub_array_sum_optimized(arr, n):
max_sum = 0
for i in range(n):
curr_sum = 0
for j in range(i, n):
curr_sum += arr[j]
if curr_sum > max_sum:
max_sum = curr_sum
return max_sum
def max_sub_array_sum_optimized_2(arr, n):
max_sum = 0
for i in range(n):
curr_sum = 0
for j in range(i, n):
curr_sum += arr[j]
if curr_sum > max_sum:
max_sum = curr_sum
return max_sum
def max_sub_array_sum_optimized_3(arr, n):
max_sum = 0
for i in range(n):
curr_sum = 0
for j in range(i, n):
curr_sum += arr[j]
if curr_sum > max_sum:
max_sum = curr_sum
return max_sum
def max_sub_array_sum_optimized_4(arr, n):
max_sum = 0
for i in range(n):
curr_sum = 0
for j in range(i, n):
curr_sum += arr[j]
if curr_sum > max_sum:
max_sum = curr_sum
return max_sum
def max_sub_array_sum_optimized_5(arr, n):
max_sum = 0
for i in range(n):
curr_sum = 0
for j in range(i, n):
curr_sum += arr[j
code-llama-multi-13b. fail_base: True, fail_plus: True
"""
Write a function to find the sum of the largest contiguous sublist in the given list.
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
"""
def max_sub_array_sum(arr, k):
"""
:param arr: list
:param k: int
:return: int
"""
if len(arr) == 0:
return 0
max_sum = 0
current_sum = 0
for i in range(len(arr)):
current_sum += arr[i]
if i >= k - 1:
max_sum = max(max_sum, current_sum)
current_sum -= arr[i - k + 1]
return max_sum
if __name__ == '__main__':
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 3) == 3
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 1) == 1
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 2) == 1
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 4) == 5
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 5) == 5
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 6) == 5
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 7) == 7
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1
deepseek-coder-6.7b-instruct. fail_base: False, fail_plus: True
Here is the Python function in a markdown style code block:
```python
def max_sub_array_sum(arr, n):
max_so_far = float('-inf')
max_ending_here = 0
for i in range(0, n):
max_ending_here = max_ending_here + arr[i]
if max_so_far < max_ending_here:
max_so_far = max_ending_here
if max_ending_here < 0:
max_ending_here = 0
return max_so_far
# Test the function
print(max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8)) # Output: 7
```
This function uses the Kadane's algorithm to find the sum of the largest contiguous sublist in the given list. The algorithm maintains a variable `max_ending_here` to store the sum of the current sublist and `max_so_far` to store the maximum sum found so far. It iterates over the list, adding the current element to `max_ending_here` and updating `max_so_far` if `max_ending_here` is greater. If `max_ending_here` becomes negative, it is reset to 0. The function finally returns `max_so_far` which is the sum of the largest contiguous sublist.
open-hermes-2.5-code-290k-13b. fail_base: True, fail_plus: True
def max_sub_array_sum(lst, k):
max_sum = float('-inf')
current_sum = 0
start_index = 0
for i in range(len(lst)):
current_sum += lst[i]
if current_sum > max_sum and (i - start_index + 1) <= k:
max_sum = current_sum
start_index = i - max_sum + 1
elif current_sum < 0:
current_sum = 0
start_index += 1
return max_sum
print(max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8))
codet5p-6b. fail_base: False, fail_plus: False
"""
Write a function to find the sum of the largest contiguous sublist in the given list.
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
"""
def max_sub_array_sum(arr, size):
max_sum = 0
for i in range(size):
sum = 0
for j in range(i, size):
sum += arr[j]
if sum > max_sum:
max_sum = sum
return max_sum
print(max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8))
print(max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 7))
print(max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 6))
print(max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 5))
print(max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 4))
print(max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 3))
print(max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 2))
print(max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 1))
print(max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 0))
print(max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], -1))
print(max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], -2))
print(max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], -3))
print(max_sub_array_sum([-2, -3, 4, -1, -2
codegemma-7b-it. fail_base: False, fail_plus: True
def max_sub_array_sum(arr, n):
"""
Write a function to find the sum of the largest contiguous sublist in the given list.
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
"""
max_so_far = float('-inf')
max_ending_here = 0
for i in range(n):
max_ending_here = max_ending_here + arr[i]
if max_so_far < max_ending_here:
max_so_far = max_ending_here
if max_ending_here < 0:
max_ending_here = 0
return max_so_far
mistralai--Mistral-7B-Instruct-v0.2. fail_base: True, fail_plus: True
"""
Write a function to find the sum of the largest contiguous sublist in the given list.
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
"""
def max_sub_array_sum(arr, target_sum):
"""
Find the sum of the largest contiguous sublist in the given list with sum equal to or greater than the target_sum.
:param arr: List of integers
:param target_sum: Target sum
:return: The sum of the largest contiguous sublist
"""
current_sum, max_sum = 0, 0
start = 0
for i in range(len(arr)):
current_sum += arr[i]
while current_sum > target_sum:
current_sum -= arr[start]
start += 1
max_sum = max(max_sum, current_sum)
return max_sum
xwincoder-34b. fail_base: False, fail_plus: True
def max_sub_array_sum(arr, target_sum):
max_sum = float('-inf')
current_sum = 0
for num in arr:
current_sum = max(num, current_sum + num)
max_sum = max(max_sum, current_sum)
return max_sum
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
wizardcoder-15b. fail_base: False, fail_plus: True
Here's the Python script for the given problem:
```python
def max_sub_array_sum(arr, n):
max_sum = arr[0]
curr_sum = arr[0]
for i in range(1, n):
curr_sum = max(arr[i], curr_sum + arr[i])
max_sum = max(max_sum, curr_sum)
return max_sum
```
Explanation:
- The function `max_sub_array_sum` takes two arguments: `arr` and `n`.
- `arr` is the list of integers and `n` is the length of the list.
- We initialize two variables: `max_sum` and `curr_sum`.
- `max_sum` will store the maximum sum of the contiguous sublist seen so far, and `curr_sum` will store the current sum of the contiguous sublist.
- We loop through the list from index 1 to n-1.
- For each index i, we update `curr_sum` as the maximum of the current element and the sum of the current element and the previous `curr_sum`.
- We update `max_sum` as the maximum of the current `max_sum` and the current `curr_sum`.
- Finally, we return `max_sum`.
The time complexity of this function is O(n), where n is the length of the input list. This is because we are looping through the list only once. The space complexity is O(1), as we are using only two variables to store the maximum sum and the current sum of the contiguous sublist.
code-llama-34b. fail_base: False, fail_plus: False
"""
Write a function to find the sum of the largest contiguous sublist in the given list.
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
"""
def max_sub_array_sum(arr, size):
max_so_far = 0
max_ending_here = 0
for i in range(0, size):
max_ending_here = max_ending_here + arr[i]
if max_ending_here < 0:
max_ending_here = 0
elif max_so_far < max_ending_here:
max_so_far = max_ending_here
return max_so_far
if __name__ == '__main__':
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
deepseek-coder-33b-instruct. fail_base: True, fail_plus: True
Here is the Python function to find the sum of the largest contiguous sublist in the given list:
```python
def max_sub_array_sum(arr):
max_so_far = max_ending_here = arr[0]
for i in range(1, len(arr)):
max_ending_here = max(arr[i], max_ending_here + arr[i])
max_so_far = max(max_so_far, max_ending_here)
return max_so_far
```
This function uses the Kadane's algorithm to find the maximum subarray sum. It initializes two variables, `max_so_far` and `max_ending_here`, to the first element of the array. Then it iterates over the array from the second element to the end. For each element, it updates `max_ending_here` to be the maximum of the current element and the sum of the current element and `max_ending_here`. Then it updates `max_so_far` to be the maximum of `max_so_far` and `max_ending_here`. Finally, it returns `max_so_far`, which is the sum of the maximum subarray.
phi-2. fail_base: True, fail_plus: True
"""
Write a function to find the sum of the largest contiguous sublist in the given list.
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
"""
def max_sub_array_sum(arr, k):
"""
:param arr: list of integers
:param k: integer
:return: integer
"""
max_sum = 0
for i in range(len(arr) - k + 1):
sub_arr = arr[i:i+k]
sub_sum = sum(sub_arr)
if sub_sum > max_sum:
max_sum = sub_sum
return max_sum
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 3) == 6
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 2) == 5
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 1) == 4
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 0) == 0
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 9) == 0
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 10) == 0
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 11) == 0
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 12) == 0
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 13) == 0
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 14) == 0
assert max_sub_array_sum
codet5p-2b. fail_base: False, fail_plus: False
"""
Write a function to find the sum of the largest contiguous sublist in the given list.
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
"""
def max_sub_array_sum(arr, n):
max_sum = 0
for i in range(n):
for j in range(i, n):
max_sum = max(max_sum, sum(arr[i:j+1]))
return max_sum
print(max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8))
def max_sub_array_sum_2(arr, n):
max_sum = 0
for i in range(n):
for j in range(i, n):
max_sum = max(max_sum, sum(arr[i:j+1]))
return max_sum
print(max_sub_array_sum_2([-2, -3, 4, -1, -2, 1, 5, -3], 8))
def max_sub_array_sum_3(arr, n):
max_sum = 0
for i in range(n):
for j in range(i, n):
max_sum = max(max_sum, sum(arr[i:j+1]))
return max_sum
print(max_sub_array_sum_3([-2, -3, 4, -1, -2, 1, 5, -3], 8))
def max_sub_array_sum_4(arr, n):
max_sum = 0
for i in range(n):
for j in range(i, n):
max_sum = max(max_sum, sum(arr[i:j+1]))
return max_sum
print(max_sub_array_sum_4([-2, -3, 4, -1, -2, 1, 5, -3], 8))
def max_sub_array_sum_5(arr, n):
max_sum = 0
for i in range(n):
for j in range(i, n):
max_sum = max(max_sum, sum(arr[i:j+1]))
return max_sum
print(
bigcode--starcoder2-15b-instruct-v0.1. fail_base: False, fail_plus: True
def max_sub_array_sum(nums, expected_sum):
max_sum = nums[0]
current_sum = nums[0]
for num in nums[1:]:
current_sum = max(num, current_sum + num)
max_sum = max(max_sum, current_sum)
return max_sum
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
```
codegemma-2b. fail_base: False, fail_plus: False
"""
Write a function to find the sum of the largest contiguous sublist in the given list.
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
"""
def max_sub_array_sum(arr, n):
max_sum = 0
for i in range(n):
for j in range(i, n):
sub_array = arr[i:j+1]
sub_array_sum = sum(sub_array)
if sub_array_sum > max_sum:
max_sum = sub_array_sum
return max_sum
<|file_separator|>
white-rabbit-neo-33b-v1. fail_base: True, fail_plus: True
def max_sub_array_sum(arr):
max_so_far = arr[0]
current_max = arr[0]
for i in range(1, len(arr)):
current_max = max(arr[i], current_max + arr[i])
max_so_far = max(max_so_far, current_max)
return max_so_far
# Test the function
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3]) == 7
microsoft--Phi-3-mini-4k-instruct. fail_base: False, fail_plus: True
def max_sub_array_sum(arr, num):
"""
Find the sum of the largest contiguous sublist in the given list.
:param arr: List of integers
:param num: Target sum
:return: Sum of the largest contiguous sublist
"""
max_sum = float('-inf')
current_sum = 0
for num in arr:
current_sum = max(num, current_sum + num)
max_sum = max(max_sum, current_sum)
return max_sum
# Test the function
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
speechless-codellama-34b. fail_base: True, fail_plus: True
def max_sub_array_sum(arr, k):
n = len(arr)
max_sum = float('-inf')
window_sum = 0
for i in range(n):
window_sum += arr[i]
if i >= k:
window_sum -= arr[i - k]
max_sum = max(max_sum, window_sum)
return max_sum
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
```
Explanation:
The function `max_sub_array_sum` takes two arguments: `arr` (the input list) and `k` (the length of the contiguous sublist). It initializes `max_sum` to negative infinity and `window_sum` to 0. It then iterates through the list, adding each element to `window_sum` and subtracting the element that is `k` positions away from the current index (if it exists). If the current `window_sum` is greater than `max_sum`, it updates `max_sum`. Finally, it returns `max_sum`.
In the given example, the function is called with the list `[-2, -3, 4, -1, -2, 1, 5, -3]` and `k=8`. The function iterates through the list, updating `window_sum` and `max_sum` as follows:
- `window_sum = -2` (first element)
- `max_sum = -2` (first element)
- `window_sum = -5` (second element)
- `max_sum = -2` (first element)
- `window_sum = -1` (third element)
- `max_sum = -1` (first element)
- `window_sum = 3` (fourth element)
- `max_sum = 3` (third element)
- `window_sum = 2` (fifth element)
- `max_sum = 3` (third element)
- `window_sum = 3` (sixth element)
- `max_sum = 3` (third element)
- `window_sum = 8` (seventh element)
- `max_sum = 8` (eighth element)
- `window_sum = 10` (eighth element)
- `max_sum = 10` (ninth element)
- `window_sum = 12` (ninth element)
- `max_sum = 12` (tenth element)
- `window_sum = 7` (tenth element)
- `max_sum = 12` (tenth element)
The final value of `max_sum` is 12, which is greater than 7, so the assertion fails. However, if we change the input list to `[-2, -3, 4, -1, -2, 1, 5, -3]` and `k=8`, the function correctly returns 7.
meta-llama-3-70b-instruct. fail_base: False, fail_plus: True
def max_sub_array_sum(arr, n):
max_sum = float('-inf')
window_sum = 0
window_start = 0
for window_end in range(n):
window_sum += arr[window_end]
if window_end >= n - 1:
max_sum = max(max_sum, window_sum)
window_sum -= arr[window_start]
window_start += 1
return max_sum
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
stable-code-3b. fail_base: True, fail_plus: True
"""
Write a function to find the sum of the largest contiguous sublist in the given list.
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
"""
def max_sub_array_sum(arr, k):
"""
:param arr: list
:param k: int
:return: int
"""
if len(arr) < k:
return 0
max_sum = 0
for i in range(len(arr) - k + 1):
sum = 0
for j in range(k):
sum += arr[i + j]
if sum > max_sum:
max_sum = sum
return max_sum
if __name__ == '__main__':
print(max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8))
codegen-6b. fail_base: True, fail_plus: True
"""
Write a function to find the sum of the largest contiguous sublist in the given list.
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
"""
def max_sub_array_sum(arr, k):
"""
:type arr: List[int]
:type k: int
:rtype: int
"""
if len(arr) == 0:
return 0
if len(arr) == 1:
return arr[0]
if k == 1:
return max(arr)
if k == len(arr):
return sum(arr)
max_sum = 0
for i in range(len(arr) - k + 1):
max_sum = max(max_sum, sum(arr[i:i + k]))
return max_sum
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 7) == 7
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 6) == 6
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 5) == 5
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 4) == 4
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 3) == 3
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 2) == 2
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 1) == 1
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 0) == 0
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], -1) == -1
assert
gpt-4-1106-preview. fail_base: False, fail_plus: True
"""
Write a function to find the sum of the largest contiguous sublist in the given list.
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
"""
def max_sub_array_sum(arr, n):
max_so_far = arr[0]
max_ending_here = arr[0]
for i in range(1, n):
max_ending_here = max(arr[i], max_ending_here + arr[i])
max_so_far = max(max_so_far, max_ending_here)
return max_so_far
# Example usage
# assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
gemma-7b-it. fail_base: True, fail_plus: True
def max_sub_array_sum(arr, k):
# Calculate the prefix sum of the array
prefix_sum = []
cumulative_sum = 0
for i in range(len(arr)):
cumulative_sum += arr[i]
prefix_sum.append(cumulative_sum - cumulative_sum[i - k] if i - k else cumulative_sum)
# Find the maximum sublist sum
return max(prefix_sum)
opencodeinterpreter-ds-33b. fail_base: False, fail_plus: True
```python
def max_sub_array_sum(arr, n):
max_so_far = arr[0]
curr_max = arr[0]
for i in range(1, n):
curr_max = max(arr[i], curr_max + arr[i])
max_so_far = max(max_so_far, curr_max)
return max_so_far
# Test the function
print(max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8)) # Output: 7
openchat. fail_base: False, fail_plus: True
def max_sub_array_sum(arr, n):
max_sum = arr[0]
current_sum = arr[0]
for i in range(1, n):
current_sum = max(arr[i], current_sum + arr[i])
max_sum = max(max_sum, current_sum)
return max_sum
# Test case
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
speechless-starcoder2-7b. fail_base: True, fail_plus: True
def max_sub_array_sum(arr, target):
max_sum = 0
current_sum = 0
for num in arr:
current_sum += num
if current_sum > target:
current_sum = 0
if current_sum > max_sum:
max_sum = current_sum
return max_sum
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
wizardcoder-7b. fail_base: True, fail_plus: True
Here's a Python function that finds the sum of the largest contiguous sublist in a given list:
```python
def max_sub_array_sum(arr):
max_sum = float('-inf')
current_sum = 0
max_start = 0
max_end = 0
start = 0
for end, num in enumerate(arr):
if current_sum <= 0:
current_sum = num
start = end
else:
current_sum += num
if current_sum > max_sum:
max_sum = current_sum
max_start = start
max_end = end
return max_sum
```
This function uses a sliding window approach to find the largest contiguous sublist. It keeps track of the current sum and the start index of the sublist. When the current sum is less than or equal to 0, it resets the current sum to the current element and updates the start index. If the current sum is greater than the maximum sum found so far, it updates the maximum sum and start index. At the end, it returns the maximum sum.
To use this function with the given input, you can call it like this:
```python
print(max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3]))
```
This will output `7`, which is the sum of the sublist `[4, -1, 5]`.
octocoder. fail_base: True, fail_plus: True
"""
Write a function to find the sum of the largest contiguous sublist in the given list.
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
"""
def max_sub_array_sum(arr, k):
max_sum = 0
for i in range(len(arr) - k + 1):
current_sum = sum(arr[i:i+k])
if current_sum > max_sum:
max_sum = current_sum
return max_sum
gemma-1.1-7b-it. fail_base: False, fail_plus: True
def max_sub_array_sum(arr, k):
max_sum = float('-inf')
current_sum = 0
for i in range(len(arr)):
current_sum = max(current_sum + arr[i], arr[i])
max_sum = max(max_sum, current_sum)
return max_sum
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
deepseek-coder-6.7b-base. fail_base: False, fail_plus: True
"""
Write a function to find the sum of the largest contiguous sublist in the given list.
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
"""
def max_sub_array_sum(arr, n):
max_so_far = arr[0]
curr_max = arr[0]
for i in range(1, n):
curr_max = max(arr[i], curr_max + arr[i])
max_so_far = max(max_so_far, curr_max)
return max_so_far
if __name__ == "__main__":
arr = [-2, -3, 4, -1, -2, 1, 5, -3]
n = len(arr)
max_sum = max_sub_array_sum(arr, n)
print("Maximum contiguous sum is ", max_sum)
codegen-16b. fail_base: True, fail_plus: True
"""
Write a function to find the sum of the largest contiguous sublist in the given list.
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
"""
def max_sub_array_sum(arr, k):
max_sum = 0
for i in range(len(arr) - k + 1):
current_sum = 0
for j in range(i, i + k):
current_sum += arr[j]
max_sum = max(max_sum, current_sum)
return max_sum
print(max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8))
mistral-7b. fail_base: True, fail_plus: True
"""
Write a function to find the sum of the largest contiguous sublist in the given list.
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
"""
def max_sub_array_sum(arr, k):
"""
:param arr: list
:param k: int
:return: int
"""
max_sum = 0
current_sum = 0
for i in range(len(arr)):
current_sum += arr[i]
if i >= k - 1:
max_sum = max(max_sum, current_sum)
current_sum -= arr[i - k + 1]
return max_sum
if __name__ == '__main__':
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
speechless-mistral-7b. fail_base: True, fail_plus: True
def max_sub_array_sum(nums, k):
n = len(nums)
left = 0
right = 0
sum = 0
max_sum = 0
while right < n:
sum += nums[right]
right += 1
while sum > k:
sum -= nums[left]
left += 1
if sum > max_sum:
max_sum = sum
return max_sum
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
```
This Python script defines a function `max_sub_array_sum` that takes two arguments: a list of integers `nums` and an integer `k`. The function returns the sum of the largest contiguous sublist in `nums` whose sum is less than or equal to `k`.
The function uses two pointers `left` and `right` to iterate through the list. It also uses a variable `sum` to keep track of the current sum of the sublist. The function initializes `left` and `right` to 0 and `sum` to 0.
The function then enters a loop that runs while `right` is less than the length of `nums`. In each iteration of the loop, the function adds the element at `right` to `sum` and increments `right`.
The function then enters another loop that runs while `sum` is greater than `k`. In each iteration of this loop, the function subtracts the element at `left` from `sum` and increments `left`.
After the inner loop finishes, the function checks if `sum` is greater than `max_sum`. If it is, the function updates `max_sum` to `sum`.
Finally, the function returns `max_sum`.
The assert statement at the end of the script checks if the function returns the correct result for the given input.
codet5p-16b. fail_base: True, fail_plus: True
"""
Write a function to find the sum of the largest contiguous sublist in the given list.
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
"""
def max_sub_array_sum(arr, k):
max_sum = 0
for i in range(len(arr) - k + 1):
current_sum = 0
for j in range(i, i + k):
current_sum += arr[j]
max_sum = max(max_sum, current_sum)
return max_sum
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 4) == 5
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 3) == 4
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 2) == 3
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 1) == 3
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 0) == 0
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], -1) == 0
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], -2) == 0
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], -3) == 0
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], -4) == 0
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], -5) == 0
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], -
code-llama-13b. fail_base: True, fail_plus: True
"""
Write a function to find the sum of the largest contiguous sublist in the given list.
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
"""
def max_sub_array_sum(arr, k):
max_sum = 0
for i in range(len(arr) - k + 1):
current_sum = 0
for j in range(k):
current_sum += arr[i + j]
if current_sum > max_sum:
max_sum = current_sum
return max_sum
print(max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8))
xdan-l1-chat. fail_base: True, fail_plus: True
def max_sub_array_sum(arr, k):
max_sum = current_sum = arr[0]
for i in range(1, len(arr)):
current_sum = max(arr[i], current_sum + arr[i])
if i >= k - 1:
max_sum = max(max_sum, current_sum)
return max_sum
# Test the function
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
solar-10.7b-instruct. fail_base: True, fail_plus: True
"""
Write a function to find the sum of the largest contiguous sublist in the given list.
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
"""
def max_sub_array_sum(arr):
n = len(arr)
max_so_far = 0
max_ending_here = 0
curr_sum = 0
for i in range(n):
curr_sum = curr_sum + arr[i]
max_ending_here = max(max_ending_here, curr_sum)
max_so_far = max(max_so_far, max_ending_here)
if curr_sum < 0:
curr_sum = 0
return max_sub_array_sum(arr), max_so_far
# Test the function
print(max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3]))
gemma-2b. fail_base: False, fail_plus: False
"""
Write a function to find the sum of the largest contiguous sublist in the given list.
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
"""
def max_sub_array_sum(arr, n):
max_sum = 0
curr_sum = 0
for i in range(n):
curr_sum += arr[i]
if curr_sum > max_sum:
max_sum = curr_sum
if curr_sum < 0:
curr_sum = 0
return max_sum
claude-3-sonnet-20240229. fail_base: False, fail_plus: True
Here's the Python code to solve the problem, wrapped in a markdown block:
```python
def max_sub_array_sum(nums, n):
"""
Find the sum of the largest contiguous sublist in the given list.
Args:
nums (list): The input list of integers.
n (int): The length of the input list.
Returns:
int: The sum of the largest contiguous sublist.
"""
max_sum = float('-inf')
current_sum = 0
for num in nums:
current_sum = max(num, current_sum + num)
max_sum = max(max_sum, current_sum)
return max_sum
# Test case
starcoder2-15b-oci. fail_base: True, fail_plus: True
"""
Write a function to find the sum of the largest contiguous sublist in the given list.
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
"""
def max_sub_array_sum(nums, k):
max_sum = float('-inf')
for i in range(len(nums)):
for j in range(i, len(nums)):
if sum(nums[i:j+1]) == k:
max_sum = max(max_sum, sum(nums[i:j+1]))
return max_sum
starcoder2-3b. fail_base: True, fail_plus: True
"""
Write a function to find the sum of the largest contiguous sublist in the given list.
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
"""
def max_sub_array_sum(arr, n):
max_sum = 0
current_sum = 0
for i in range(n):
current_sum += arr[i]
if current_sum > max_sum:
max_sum = current_sum
if current_sum < 0:
current_sum = 0
return max_sum
print(max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8))
/python/leetcode/1001-1100/1001.py
"""
Given an array of integers arr.
We want to select three indices i, j and k where (0 <= i < j <= k < arr.length).
Let's define a and b as follows:
a = arr[i] ^ arr[i + 1] ^ ... ^ arr[j - 1]
b = arr[j] ^ arr[j + 1] ^ ... ^ arr[k]
Note that ^ denotes the bitwise-xor operation.
Return the number of triplets (i, j and k) Where a == b.
Example 1:
Input: arr = [2,3,1,6,7]
Output: 4
Explanation: The triplets are (0,1,2), (0,2,2), (2,3,4) and (2,4,4)
Example 2:
Input: arr = [1,1,1,1,1]
Output: 10
Example 3:
Input: arr = [2,3]
Output: 0
Example 4:
Input: arr = [1,3,5,7,9]
Output: 3
Example 5:
Input: arr = [7,7,7,7,7,7,7]
Output: 21
Constraints:
1 <= arr.length <= 300
1 <= arr[i] <= 10^8
"""
class Solution:
def tripletSum(self, arr):
arr.sort()
count = 0
for i in range(len(arr) -
speechless-starcoder2-15b. fail_base: True, fail_plus: True
def max_sub_array_sum(lst, k):
n = len(lst)
max_sum = float('-inf')
for i in range(n):
current_sum = 0
for j in range(i, n):
current_sum += lst[j]
if current_sum > max_sum and j - i + 1 == k:
max_sum = current_sum
return max_sum
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
gemma-7b. fail_base: True, fail_plus: True
"""
Write a function to find the sum of the largest contiguous sublist in the given list.
assert max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8) == 7
"""
def max_sub_array_sum(arr, k):
if k == 0:
return 0
if k == 1:
return max(arr)
max_sum = arr[0]
for i in range(k, len(arr)):
max_sum = max(max_sum, arr[i] + max_sub_array_sum(arr, i - k + 1))
return max_sum
opencodeinterpreter-ds-6.7b. fail_base: False, fail_plus: True
```python
def max_sub_array_sum(arr, n):
max_sum = float('-inf')
curr_sum = 0
for i in range(n):
curr_sum = max(arr[i], curr_sum + arr[i])
max_sum = max(max_sum, curr_sum)
return max_sum
# Test the function
print(max_sub_array_sum([-2, -3, 4, -1, -2, 1, 5, -3], 8))