Mbpp/72

 """
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""
 

solution

 
def dif_Square(n): 
    # see https://www.quora.com/Which-numbers-can-be-expressed-as-the-difference-of-two-squares
    return n % 4 != 2
 

base input

 [[5], [10], [15]] 

plus input

 [[991], [567], [13], [24], [568], [992], [569], [990], [566], [True], [989], [25], [14], [565], [23], [15], [988], [12], [11], [16], [17], [993], [564], [563], [22], [10], [994], [9], [21], [995], [996], [20], [18], [997], [8], [987], [45], [562], [570], [26], [561], [998], [19], [77], [7], [76], [560], [986], [27], [44], [571], [28], [75], [46], [78], [74], [985], [29], [572], [984], [73], [983], [79], [573], [47], [50], [982], [981], [5], [71], [49], [80], [51], [999], [30], [81], [6], [1000], [980], [1001], [1002], [82], [1003], [52], [574], [53], [1004], [70], [575], [69], [576], [979], [83], [72], [68], [43], [89], [42], [977], [33], [4], [36], [978], [3]] 

Generations

code-llama-multi-7b. fail_base: True, fail_plus: True

  """
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""


def dif_Square(n):
    for i in range(1, n + 1):
        for j in range(1, n + 1):
            if i * i + j * j == n:
                return True
    return False


if __name__ == '__main__':
    print(dif_Square(5))
    print(dif_Square(12))
    print(dif_Square(13))
    print(dif_Square(14))
    print(dif_Square(15))
    print(dif_Square(16))
    print(dif_Square(17))
    print(dif_Square(18))
    print(dif_Square(19))
    print(dif_Square(20))
    print(dif_Square(21))
    print(dif_Square(22))
    print(dif_Square(23))
    print(dif_Square(24))
    print(dif_Square(25))
    print(dif_Square(26))
    print(dif_Square(27))
    print(dif_Square(28))
    print(dif_Square(29))
    print(dif_Square(30))
    print(dif_Square(31))
    print(dif_Square(32))
    print(dif_Square(33))
    print(dif_Square(34))
    print(dif_Square(35))
    print(dif_Square(36))
    print(dif_Square(37))
    print(dif_Square(38))
    print(dif_Square(39))
    print(dif_Square(40))
    print(dif_Square(41))
    print(dif_Square(42))
    print(dif_Square(43))
    print(dif_Square(44

databricks--dbrx-instruct. fail_base: True, fail_plus: True

  def dif_square(n):
    """
    This function checks if a given number can be represented as the difference of two squares or not.
    :param n: int
    :return: bool
    """
    if n < 0:
        return False
    for i in range(n + 1):
        for j in range(i + 1, n + 1):
            if i * i - j * j == n:
                return True
    return False

# Test the function
assert dif_square(5) == True
assert dif_square(4) == True
assert dif_square(3) == False
assert dif_square(0) == True
assert dif_square(-1) == False

CohereForAI--c4ai-command-r-plus. fail_base: True, fail_plus: True

  def dif_Square(n):
    if n < 0:
        return False
    for i in range(1, int(n ** 0.5) + 1):
        if ((i ** 2) - (n - i ** 2) == n) or ((n - i ** 2) - (i ** 2) == n):
            return True
    return False
```

claude-3-haiku-20240307. fail_base: True, fail_plus: True

  Here's the solution wrapped in a Python markdown block:

```python
def dif_Square(n):
    """
    Checks whether the given number can be represented as the difference of two squares.
    
    Args:
        n (int): The number to be checked.
        
    Returns:
        bool: True if the number can be represented as the difference of two squares, False otherwise.
    """
    for i in range(int(n ** 0.5) + 1):
        j = n - i ** 2
        if j >= 0 and int(j ** 0.5) ** 2 == j:
            return True
    return False

code-millenials-34b. fail_base: False, fail_plus: True

  def dif_Square(n):
    if n < 0:
        return False
    i = 1
    while i*i <= n:
        j = int((n + i*i)**0.5)
        if i*i == n or (j*j - i*i) == n:
            return True
        i += 1
    return False

# Test the function
assert dif_Square(5) == True

dolphin-2.6. fail_base: True, fail_plus: True

  """
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""
def dif_Square(n):
    # Check if the number is a perfect square
    if n < 0:
        return False
    else:
        # Calculate the square root of the number
        sqrt_n = int(n ** 0.5)
        # Check if the square root is a perfect square
        if sqrt_n * sqrt_n == n:
            # Calculate the difference of two squares
            diff = sqrt_n * sqrt_n - (sqrt_n - 1) * (sqrt_n - 1)
            # Check if the difference is equal to the given number
            if diff == n:
                return True
            else:
                return False
        else:
            return False

# Test the function
assert dif_Square(5) == True
assert dif_Square(10) == False
assert dif_Square(16) == True
assert dif_Square(25) == True
assert dif_Square(36) == True
assert dif_Square(49) == True
assert dif_Square(64) == True
assert dif_Square(81) == True
assert dif_Square(100) == True

claude-3-opus-20240229. fail_base: True, fail_plus: True

  Here's the code to solve the problem, wrapped in a markdown block:

```python
def dif_Square(n):
    i = 1
    while i * i <= n:
        j = 1
        while j * j <= n:
            if i * i - j * j == n:
                return True
            j += 1
        i += 1
    return False

mixtral-8x7b-instruct. fail_base: True, fail_plus: True

  def dif_Square(num):
    # Initialize start and end of the range as the square root of the given number
    start = int(num**0.5)
    end = start + 1

    # Iterate through the range and check if the difference of squares equals to the given number
    for i in range(start, end):
        square_diff = (i+1)**2 - i**2
        if square_diff == num:
            return True
        elif square_diff > num:
            break

    # If no such pair is found, return False
    return False

# Test the function
assert dif_Square(5) == True
assert dif_Square(6) == False
assert dif_Square(13) == True
assert dif_Square(100) == True
assert dif_Square(101) == False

wizardcoder-34b. fail_base: True, fail_plus: True

  Here's the Python function to check whether the given number can be represented as the difference of two squares or not:


```python
def dif_Square(num):
    """
    This function takes a number as input and returns True if it can be represented as the difference of two squares, otherwise False.
    """
    # loop through all the numbers from 1 to the given number
    for i in range(1, num+1):
        # calculate the square of the current number
        square1 = i**2
        # check if the difference between the square of current number and the given number is also a square
        if (num - square1)**0.5 == int((num - square1)**0.5):
            return True
    return False
```

Explanation:

- We loop through all the numbers from 1 to the given number and calculate the square of each number.
- We check if the difference between the square of the current number and the given number is also a square.
- If it is a square, we return True, else we continue the loop.
- If we have looped through all the numbers and not found a square, we return False.

Let's test the function with the given example:

```python
assert dif_Square(5) == True
```

Output:

```python
True
```

Explanation:

- For num=5, the function loops through 1, 2, 3, 4, and 5.
- For i=2, the square of 2 is 4 and the difference between 5 and 4 is 1, which is not a square.
- For i=3, the square of 3 is 9 and the difference between 5 and 9 is 4, which is not a square.
- For i=4, the square of 4 is 16 and the difference between 5 and 16 is 11, which is not a square.
- For i=5, the square of 5 is 25 and the difference between 5 and 25 is 20, which is not a square.
- The function returns False since it has looped through all the numbers and not found a square.

Therefore, the function returns False. 

mixtral-8x22b-instruct-v0.1. fail_base: True, fail_plus: True

  def dif_square(n):
    """
    This function checks whether the given number can be represented as the difference of two squares or not.
    """
    # Iterate from 1 to the square root of n
    for i in range(1, int(n**0.5) + 1):
        # Calculate the difference of squares
        diff = i**2 - (n - i**2)
        # If the difference is a perfect square, return True
        if diff >= 0 and (diff**0.5).is_integer():
            return True
    # If no perfect square difference is found, return False
    return False

# Test the function
assert dif_square(5) == True
assert dif_square(10) == False
assert dif_square(13) == True
assert dif_square(20) == False

code-llama-multi-34b. fail_base: True, fail_plus: True

  """
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""

def dif_Square(num):
    for i in range(1, num):
        if (i * i - num) % 2 == 0:
            return True
    return False


if __name__ == "__main__":
    assert dif_Square(5) == True
    assert dif_Square(10) == False
    assert dif_Square(11) == False
    assert dif_Square(12) == True
    assert dif_Square(13) == False
    assert dif_Square(14) == True
    assert dif_Square(15) == True
    assert dif_Square(16) == True
    assert dif_Square(17) == False
    assert dif_Square(18) == True
    assert dif_Square(19) == False
    assert dif_Square(20) == True
    assert dif_Square(21) == False
    assert dif_Square(22) == True
    assert dif_Square(23) == False
    assert dif_Square(24) == True
    assert dif_Square(25) == True
    assert dif_Square(26) == True
    assert dif_Square(27) == False
    assert dif_Square(28) == True
    assert dif_Square(29) == False
    assert dif_Square(30) == True
    assert dif_Square(31) == False
    assert dif_Square(32) == True
    assert dif_Square(33) == False
    assert dif_Square(34) == True
    assert dif_Square(35) == True
    assert dif_Square(36) == True
    assert dif_Square(37) == False
    assert dif_Square(38) == True
    assert dif_Square(39) == False
    assert dif_Square(40) == True
    assert dif_Square(41) == False
    assert dif_Square(42) == True
    assert dif_Square(43) == False

Qwen--Qwen1.5-72B-Chat. fail_base: True, fail_plus: True

  def dif_Square(n):
    # Check if the number can be represented as the difference of two squares
    # A number can be represented as a difference of two squares if and only if it is not a multiple of 4
    return n % 4 != 0

# Test cases
assert dif_Square(5) == True
assert dif_Square(4) == False
assert dif_Square(10) == True
assert dif_Square(12) == False

mistral-large-latest. fail_base: False, fail_plus: True

  Sure, I'd be happy to help with that. Here's a Python function that checks whether a given number can be represented as the difference of two squares:

```python
def dif_Square(n):
    # Iterate from 0 to n
    for i in range(n + 1):
        # Check if the number can be represented as the difference of two squares
        if (i * i - (i - 1) * (i - 1) == n) or (i * i - (i + 1) * (i + 1) == n):
            return True
    # If no such pair is found, return False
    return False
```

This function works by iterating over all numbers from 0 to `n` and checking if the difference between the square of the current number and the square of the next (or previous) number is equal to `n`. If such a pair is found, the function returns `True`; otherwise, it returns `False`.

You can test the function with your assert statement like this:

```python
assert dif_Square(5) == True
```

This assertion will not raise an error because `dif_Square(5)` does indeed return `True`, as 5 can be represented as the difference of the squares of 3 and 2 (3^2 - 2^2 = 5).

codegen-2b. fail_base: True, fail_plus: True

  """
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""

def dif_Square(n):
    if n == 0:
        return True
    if n == 1:
        return False
    if n == 2:
        return True
    if n == 3:
        return True
    if n == 4:
        return True
    if n == 5:
        return True
    if n == 6:
        return True
    if n == 7:
        return True
    if n == 8:
        return True
    if n == 9:
        return True
    if n == 10:
        return True
    if n == 11:
        return True
    if n == 12:
        return True
    if n == 13:
        return True
    if n == 14:
        return True
    if n == 15:
        return True
    if n == 16:
        return True
    if n == 17:
        return True
    if n == 18:
        return True
    if n == 19:
        return True
    if n == 20:
        return True
    if n == 21:
        return True
    if n == 22:
        return True
    if n == 23:
        return True
    if n == 24:
        return True
    if n == 25:
        return True
    if n == 26:
        return True
    if n == 27:
        return True
    if n == 28:
        return True
    if n == 29:
        return True
    if n == 30:
        return True
    if n == 31:
        return True
    if n == 32:
        return True
    if n == 33:
        return True
    if n == 34:
        return True
    if n == 35:
        return True
    if n == 36:
        return True
    if n == 37:
        return True
    if n == 38:
        return True
    if n == 39:
        return True
    if n == 40:
        return True
    if n == 41:
        return True
    if n == 42:
        return True
    if n == 43:
        return True
    if n == 44:
        return True
    if n == 45:

HuggingFaceH4--starchat2-15b-v0.1. fail_base: True, fail_plus: True

  def dif_Square(n):
    """
    Write a python function to check whether the given number can be represented as the difference of two squares or not.
    assert dif_Square(5) == True
    """
    # If the number is negative, it cannot be represented as the difference of two squares
    if n < 0:
        return False

    # Iterate from 0 to the square root of the number
    for i in range(int(n**0.5) + 1):
        # Calculate the square of the current number and subtract it from the given number
        square = i * i
        difference = n - square

        # If the difference is a perfect square, return True
        if (difference**0.5).is_integer():
            return True

    # If no pair of squares results in a difference that is a perfect square, return False
    return False

# Test the function
assert dif_Square(5) == True
assert dif_Square(10) == True
assert dif_Square(15) == True
assert dif_Square(20) == True
assert dif_Square(25) == True
assert dif_Square(30) == False

codegemma-7b. fail_base: True, fail_plus: True

  """
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""

import math
def dif_Square(n):
    for i in range(1, n):
        if (i * i) + (int(math.sqrt(n - i * i)) * int(math.sqrt(n - i * i)) == n):
            return True
    return False

code-llama-multi-13b. fail_base: True, fail_plus: True

  """
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""

def dif_Square(n):
    for i in range(1, n):
        for j in range(1, n):
            if i**2 + j**2 == n:
                return True
    return False


if __name__ == '__main__':
    print(dif_Square(5))
    print(dif_Square(10))
    print(dif_Square(11))
    print(dif_Square(12))
    print(dif_Square(13))
    print(dif_Square(14))
    print(dif_Square(15))
    print(dif_Square(16))
    print(dif_Square(17))
    print(dif_Square(18))
    print(dif_Square(19))
    print(dif_Square(20))
    print(dif_Square(21))
    print(dif_Square(22))
    print(dif_Square(23))
    print(dif_Square(24))
    print(dif_Square(25))
    print(dif_Square(26))
    print(dif_Square(27))
    print(dif_Square(28))
    print(dif_Square(29))
    print(dif_Square(30))
    print(dif_Square(31))
    print(dif_Square(32))
    print(dif_Square(33))
    print(dif_Square(34))
    print(dif_Square(35))
    print(dif_Square(36))
    print(dif_Square(37))
    print(dif_Square(38))
    print(dif_Square(39))
    print(dif_Square(40))
    print(dif_Square(41))
    print(dif_Square(42))
    print(dif

deepseek-coder-6.7b-instruct. fail_base: True, fail_plus: True

  Here is the Python function in a markdown style code block:

```python
def dif_Square(n):
    i = 0
    while i*i <= n:
        j = 0
        while j*j <= n:
            if i*i - j*j == n:
                return True
            j += 1
        i += 1
    return False

# Test the function
assert dif_Square(5) == True
```

This function `dif_Square(n)` checks if a given number `n` can be represented as the difference of two squares. It does this by iterating over all possible values of `i` and `j` (where `i` and `j` are the two numbers that can be squared to get `n`), and checking if `i*i - j*j` equals `n`. If it does, the function returns `True`, otherwise it returns `False`.

The test `assert dif_Square(5) == True` checks if the function works correctly for the number 5. If the function returns `True`, the test passes, otherwise it fails.

open-hermes-2.5-code-290k-13b. fail_base: True, fail_plus: True

  
def dif_Square(n):
    i = 0
    while i*i <= n:
        j = int((n - i*i)**0.5)
        if i*i + j*j == n:
            return True
        i += 1
    return False

assert dif_Square(5) == True

codet5p-6b. fail_base: True, fail_plus: True

  """
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""


def dif_Square(n):
    for i in range(1,n):
        if i*i == n:
            return True
        elif i*i > n:
            return False
    return False

print(dif_Square(5))
print(dif_Square(6))
print(dif_Square(7))
print(dif_Square(8))
print(dif_Square(9))
print(dif_Square(10))
print(dif_Square(11))
print(dif_Square(12))
print(dif_Square(13))
print(dif_Square(14))
print(dif_Square(15))
print(dif_Square(16))
print(dif_Square(17))
print(dif_Square(18))
print(dif_Square(19))
print(dif_Square(20))
print(dif_Square(21))
print(dif_Square(22))
print(dif_Square(23))
print(dif_Square(24))
print(dif_Square(25))
print(dif_Square(26))
print(dif_Square(27))
print(dif_Square(28))
print(dif_Square(29))
print(dif_Square(30))
print(dif_Square(31))
print(dif_Square(32))
print(dif_Square(33))
print(dif_Square(34))
print(dif_Square(35))
print(dif_Square(36))
print(dif_Square(37))
print(dif_Square(38))
print(dif_Square(39))
print(dif_Square(40))
print(dif_Square(41))
print(dif_Square(42))
print(dif_Square(43))
print(dif_Square(44))
print(dif_Square(45))
print(dif_Square(46))
print(dif_Square(47))
print(dif_Square(48))
print(dif_Square(49))
print(dif_Square(50))

codegemma-7b-it. fail_base: False, fail_plus: True

  def dif_Square(num):
  for i in range(num):
    for j in range(num):
      if i**2 - j**2 == num:
        return True
  return False

assert dif_Square(5) == True
assert dif_Square(10) == True
assert dif_Square(15) == False

mistralai--Mistral-7B-Instruct-v0.2. fail_base: True, fail_plus: True

  """
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""
def dif_Square(n):
    """
    Checks if a given number can be represented as the difference of two squares.
    """
    for a in range(int(pow(10, 0.5))):
        b = int(pow(a, 2)) + int(pow(int(pow(a, 2) + 1, 0.5)) ** 2)
        if b > n:
            break
        if b == n:
            return True
    return False

# Test case
assert dif_Square(5) == True

xwincoder-34b. fail_base: True, fail_plus: True

  def dif_Square(n):
    if n < 0:
        return False
    for i in range(1, int(n**0.5) + 1):
        if (n - i**2)**0.5 == int((n - i**2)**0.5):
            return True
    return False

assert dif_Square(5) == True

wizardcoder-15b. fail_base: True, fail_plus: True

  Here's the Python function to check whether the given number can be represented as the difference of two squares or not:

```python
def dif_Square(num):
    # Check if the number is a perfect square
    if int(num**0.5)**2 == num:
        return False
    
    # Check if the number can be represented as the difference of two squares
    for i in range(2, int(num**0.5)+1):
        if num % i == 0:
            if (i**2 + (num//i)**2) == num:
                return True
    
    return False
```

The function first checks if the given number is a perfect square. If it is, then it cannot be represented as the difference of two squares. If it is not a perfect square, then it checks if the number can be represented as the difference of two squares. It does this by iterating through all the numbers from 2 to the square root of the given number. For each number, it checks if the given number is divisible by that number. If it is, then it checks if the difference between the squares of the two numbers is equal to the given number. If it is, then the given number can be represented as the difference of two squares. If none of the numbers from 2 to the square root of the given number divide the given number evenly, then the given number cannot be represented as the difference of two squares.

code-llama-34b. fail_base: True, fail_plus: True

  """
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""


def dif_Square(num):
    for i in range(1, num):
        if (i * i - num) ** 0.5 == int((i * i - num) ** 0.5):
            return True
    return False


assert dif_Square(5) == True

deepseek-coder-33b-instruct. fail_base: True, fail_plus: True

  Here is the Python function to check whether the given number can be represented as the difference of two squares or not.

```python
def dif_Square(n):
    i = 1
    while i * i <= n:
        j = 1
        while j * j <= i * i:
            if i * i - j * j == n:
                return True
            j += 1
        i += 1
    return False
```

This function works by iterating over all possible pairs of squares (i, j) where i^2 - j^2. If it finds a pair where the difference equals the input number, it returns True. If it iterates over all possible pairs without finding a match, it returns False.

You can test the function with the following code:

```python
print(dif_Square(5))  # Output: True
```

phi-2. fail_base: True, fail_plus: True

  """
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""

def dif_Square(n):
    for i in range(1, int(n**0.5)+1):
        if n-i*i >= 0:
            return True
    return False

assert dif_Square(5) == True
assert dif_Square(10) == False
assert dif_Square(25) == True
assert dif_Square(36) == True
assert dif_Square(49) == True
assert dif_Square(64) == True
assert dif_Square(81) == True
assert dif_Square(100) == True
assert dif_Square(101) == False
assert dif_Square(102) == False
assert dif_Square(103) == False
assert dif_Square(104) == False
assert dif_Square(105) == False
assert dif_Square(106) == False
assert dif_Square(107) == False
assert dif_Square(108) == False
assert dif_Square(109) == False
assert dif_Square(110) == False
assert dif_Square(111) == False
assert dif_Square(112) == False
assert dif_Square(113) == False
assert dif_Square(114) == False
assert dif_Square(115) == False
assert dif_Square(116) == False
assert dif_Square(117) == False
assert dif_Square(118) == False
assert dif_Square(119) == False
assert dif_Square(120) == False
assert dif_Square(121) == True
assert dif_Square(122) == True
assert dif_Square(123) == True
assert dif_Square(124) == True
assert dif_Square(125) == True
assert dif_Square(126) == True
assert dif_Square(127) == True
assert dif_Square(128) == True
assert dif_Square(129) == True
assert dif_Square(130) == True
assert dif_Square(131) == True
assert dif_Square(132) == True
assert dif_Square(133) == True
assert dif_Square(134) == True
assert

codet5p-2b. fail_base: True, fail_plus: True

  """
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""


def dif_Square(num):
    if num == 0:
        return True
    if num < 0:
        return False
    if num % 2 == 0:
        return False
    else:
        return dif_Square(num-1)

print(dif_Square(5))
print(dif_Square(6))
print(dif_Square(7))
print(dif_Square(8))
print(dif_Square(9))
print(dif_Square(10))
print(dif_Square(11))
print(dif_Square(12))
print(dif_Square(13))
print(dif_Square(14))
print(dif_Square(15))
print(dif_Square(16))
print(dif_Square(17))
print(dif_Square(18))
print(dif_Square(19))
print(dif_Square(20))
print(dif_Square(21))
print(dif_Square(22))
print(dif_Square(23))
print(dif_Square(24))
print(dif_Square(25))
print(dif_Square(26))
print(dif_Square(27))
print(dif_Square(28))
print(dif_Square(29))
print(dif_Square(30))
print(dif_Square(31))
print(dif_Square(32))
print(dif_Square(33))
print(dif_Square(34))
print(dif_Square(35))
print(dif_Square(36))
print(dif_Square(37))
print(dif_Square(38))
print(dif_Square(39))
print(dif_Square(40))
print(dif_Square(41))
print(dif_Square(42))
print(dif_Square(43))
print(dif_Square(44))
print(dif_Square(45))
print(dif_Square(46))
print(dif_Square(47))
print(dif_Square(48))
print(dif_Square(49))

bigcode--starcoder2-15b-instruct-v0.1. fail_base: True, fail_plus: True

  def dif_Square(num):
    for i in range(int(num ** 0.5) + 1):
        if (num - i ** 2) ** 0.5 % 1 == 0:
            return True
    return False

codegemma-2b. fail_base: True, fail_plus: True

  """
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""

def dif_Square(n):
    if n == 0:
        return True
    if n < 0:
        return False
    for i in range(1, n):
        if i * i + (n - i) * (n - i) == n:
            return True
    return False

white-rabbit-neo-33b-v1. fail_base: True, fail_plus: True

  def dif_Square(num):
    # Check if the number is a perfect square
    if num < 0:
        return False
    elif num == 0:
        return True
    else:
        # Check if the number can be represented as the difference of two squares
        for i in range(1, int(num**0.5) + 1):
            if (num - i*i)**0.5 % 1 == 0:
                return True
        return False

# Test the function
assert dif_Square(5) == True
assert dif_Square(17) == True
assert dif_Square(25) == True
assert dif_Square(33) == False
assert dif_Square(0) == True
assert dif_Square(-1) == False

microsoft--Phi-3-mini-4k-instruct. fail_base: True, fail_plus: True

  def dif_Square(num):
    """
    Check whether the given number can be represented as the difference of two squares.

    Args:
    num (int): The number to check.

    Returns:
    bool: True if the number can be represented as the difference of two squares, False otherwise.
    """
    for i in range(int(num**0.5) + 1):
        j = (num - i**2)**0.5
        if int(j)**2 == num - i**2:
            return True
    return False

# Test cases
assert dif_Square(5) == True
assert dif_Square(10) == True
assert dif_Square(13) == False
assert dif_Square(100) == True

speechless-codellama-34b. fail_base: True, fail_plus: True

  def dif_Square(num):
    i = 1
    while i*i <= num:
        j = 1
        while j*j <= num:
            if i*i + j*j == num:
                return True
            j += 1
        i += 1
    return False

assert dif_Square(5) == True
```

Explanation:
The function `dif_Square` takes an integer `num` as input and checks whether it can be represented as the difference of two squares or not. It uses two nested loops to iterate over all possible pairs of integers `i` and `j` such that `i*i + j*j <= num`. If it finds a pair that satisfies the condition, it returns `True`. If it iterates through all possible pairs without finding a match, it returns `False`.

The `assert` statement at the end of the code checks that the function works correctly by asserting that `dif_Square(5)` returns `True`.

meta-llama-3-70b-instruct. fail_base: False, fail_plus: True

  def dif_Square(n):
    i = 1
    while i * i <= n:
        if (i * i + n) ** 0.5 == int((i * i + n) ** 0.5):
            return True
        i += 1
    return False

assert dif_Square(5) == True

stable-code-3b. fail_base: True, fail_plus: True

  """
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""

def dif_Square(num):
    for i in range(1, num):
        if i**2 == num - i**2:
            return True
    return False

print(dif_Square(5))
print(dif_Square(8))
print(dif_Square(9))
print(dif_Square(10))
print(dif_Square(11))
print(dif_Square(12))
print(dif_Square(13))
print(dif_Square(14))
print(dif_Square(15))
print(dif_Square(16))
print(dif_Square(17))
print(dif_Square(18))
print(dif_Square(19))
print(dif_Square(20))
print(dif_Square(21))
print(dif_Square(22))
print(dif_Square(23))
print(dif_Square(24))
print(dif_Square(25))
print(dif_Square(26))
print(dif_Square(27))
print(dif_Square(28))
print(dif_Square(29))
print(dif_Square(30))
print(dif_Square(31))
print(dif_Square(32))
print(dif_Square(33))
print(dif_Square(34))
print(dif_Square(35))
print(dif_Square(36))
print(dif_Square(37))
print(dif_Square(38))
print(dif_Square(39))
print(dif_Square(40))
print(dif_Square(41))
print(dif_Square(42))
print(dif_Square(43))
print(dif_Square(44))
print(dif_Square(45))
print(dif_Square(46))
print(dif_Square(47))
print(dif_Square(48))
print(dif_Square

codegen-6b. fail_base: True, fail_plus: True

  """
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""

def dif_Square(n):
    for i in range(1,n):
        if i*i == n:
            return True
        elif i*i < n:
            if (n-i*i) == (i+i):
                return True
    return False

assert dif_Square(5) == True
assert dif_Square(6) == False
assert dif_Square(7) == True
assert dif_Square(8) == False
assert dif_Square(9) == True
assert dif_Square(10) == False
assert dif_Square(11) == True
assert dif_Square(12) == False
assert dif_Square(13) == True
assert dif_Square(14) == False
assert dif_Square(15) == True
assert dif_Square(16) == False
assert dif_Square(17) == True
assert dif_Square(18) == False
assert dif_Square(19) == True
assert dif_Square(20) == False
assert dif_Square(21) == True
assert dif_Square(22) == False
assert dif_Square(23) == True
assert dif_Square(24) == False
assert dif_Square(25) == True
assert dif_Square(26) == False
assert dif_Square(27) == True
assert dif_Square(28) == False
assert dif_Square(29) == True
assert dif_Square(30) == False
assert dif_Square(31) == True
assert dif_Square(32) == False
assert dif_Square(33) == True
assert dif_Square(34) == False
assert dif_Square(35) == True
assert dif_Square(36) == False
assert dif_Square(37) == True
assert dif_Square(38) == False
assert dif_Square(39) == True
assert dif_Square(40) == False
assert dif_Square(41) == True
assert dif_Square(42) == False
assert dif_Square(43) == True
assert dif_Square(44) == False
assert dif

gpt-4-1106-preview. fail_base: False, fail_plus: False

  """
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""


import math

def dif_Square(n):
    # A number can be expressed as a difference of two squares
    # if and only if it is not of the form 4k+2 for any integer k.
    # This is because n = x^2 - y^2 = (x + y)(x - y)
    # and for n to be expressible as a difference of two squares,
    # both (x + y) and (x - y) must be integers that differ by an even number.
    # If n is of the form 4k+2, then one of (x + y) or (x - y) would have to be odd,
    # which is not possible.
    return n % 4 != 2

# Example usage:
# assert dif_Square(5) == True

gemma-7b-it. fail_base: True, fail_plus: True

  def dif_Square(n):
    """
    Write a python function to check whether the given number can be represented as the difference of two squares or not.

    Args:
        n: The number to check.

    Returns:
        True if n can be represented as the difference of two squares, False otherwise.
    """

    # Check if n is even. If it is not, it cannot be represented as the difference of two squares.
    if n % 2 != 0:
        return False

    # Iterate over the squares of numbers from 1 to the square root of n.
    for i in range(1, int(n ** 0.5) + 1):
        square1 = i ** 2
        square2 = (int((square1 + n) ** 0.5)) ** 2

        # If the sum of squares is equal to n, return True.
        if square1 + square2 == n:
            return True

    # If no solution is found, return False.
    return False

opencodeinterpreter-ds-33b. fail_base: True, fail_plus: True

  ```python
def dif_Square(n):
    i = 1
    while i*i <= n:
        j = int((n - i*i)**0.5)
        if i*i + j*j == n:
            return True
        i += 1
    return False

# Test the function
print(dif_Square(5))  # Output: True

openchat. fail_base: False, fail_plus: True

  def dif_Square(n):
    for i in range(1, n):
        if i * i - (n - i) * (n - i) == n:
            return True
    return False

# Test case
assert dif_Square(5) == True

speechless-starcoder2-7b. fail_base: True, fail_plus: True

  def dif_Square(n):
    for i in range(int(n**0.5)+1):
        for j in range(int(n**0.5)+1):
            if i**2 + j**2 == n:
                return True
    return False

assert dif_Square(5) == True

wizardcoder-7b. fail_base: True, fail_plus: True

  Here's the Python function to check whether the given number can be represented as the difference of two squares or not:

```python
def dif_Square(n):
    for i in range(1, int(n/2)+1):
        for j in range(1, int(n/2)+1):
            if i*i + j*j == n:
                return True
    return False
```

Explanation:

We are iterating through all possible pairs of integers i and j such that i <= j and checking if their sum of squares is equal to the given number n. If we find a pair of integers whose sum of squares is equal to n, we return True. If we don't find any such pair, we return False. This is because any number can be represented as the difference of two squares if and only if there exist two integers whose sum of squares is equal to the given number. 

octocoder. fail_base: True, fail_plus: True

  """
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""


def dif_Square(n):
    if n == 0:
        return True
    for i in range(1, n):
        if i*i == n or (n-i*i)%(i+1) == 0:
            return True
    return False

gemma-1.1-7b-it. fail_base: True, fail_plus: True

  def dif_Square(n):
    if n < 1:
        return False
    for i in range(1, int(n**0.5) + 1):
        if n == i**2 - (n-i)**2:
            return True
    return False

assert dif_Square(5) == True

deepseek-coder-6.7b-base. fail_base: False, fail_plus: True

  """
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""


def dif_Square(n):
    for i in range(1, n):
        for j in range(1, n):
            if i * i - j * j == n:
                return True
    return False


print(dif_Square(5))

codegen-16b. fail_base: True, fail_plus: True

  """
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""

def dif_Square(n):
    for i in range(1,n):
        if i*i == n:
            return True
        elif i*i < n:
            if (n-i*i) == (i+i):
                return True
    return False

assert dif_Square(5) == True
assert dif_Square(6) == False
assert dif_Square(7) == True
assert dif_Square(8) == False
assert dif_Square(9) == True
assert dif_Square(10) == False
assert dif_Square(11) == True
assert dif_Square(12) == False
assert dif_Square(13) == True
assert dif_Square(14) == False
assert dif_Square(15) == True
assert dif_Square(16) == False
assert dif_Square(17) == True
assert dif_Square(18) == False
assert dif_Square(19) == True
assert dif_Square(20) == False
assert dif_Square(21) == True
assert dif_Square(22) == False
assert dif_Square(23) == True
assert dif_Square(24) == False
assert dif_Square(25) == True
assert dif_Square(26) == False
assert dif_Square(27) == True
assert dif_Square(28) == False
assert dif_Square(29) == True
assert dif_Square(30) == False
assert dif_Square(31) == True
assert dif_Square(32) == False
assert dif_Square(33) == True
assert dif_Square(34) == False
assert dif_Square(35) == True
assert dif_Square(36) == False
assert dif_Square(37) == True
assert dif_Square(38) == False
assert dif_Square(39) == True
assert dif_Square(40) == False
assert dif_Square(41) == True
assert dif_Square(42) == False
assert dif_Square(43) == True
assert dif_Square(44) == False
assert dif

mistral-7b. fail_base: False, fail_plus: True

  """
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""


def dif_Square(num):
    for i in range(1, num):
        for j in range(1, num):
            if i * i - j * j == num:
                return True
    return False


print(dif_Square(5))

speechless-mistral-7b. fail_base: True, fail_plus: True

  def dif_Square(n):
    for i in range(int(n**0.5)+1):
        for j in range(int(n**0.5)+1):
            if i*i - j*j == n:
                return True
    return False

assert dif_Square(5) == True
```

This Python function checks whether the given number can be represented as the difference of two squares or not. It uses nested loops to iterate over all possible pairs of integers i and j such that i*i - j*j equals the given number. If such a pair is found, the function returns True; otherwise, it returns False. The function is tested with the assert statement to ensure that it correctly identifies the number 5 as a number that can be represented as the difference of two squares.

codet5p-16b. fail_base: True, fail_plus: True

  """
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""


def dif_Square(n):
    for i in range(1, n):
        if i**2 - n == 0:
            return True
    return False

assert dif_Square(5) == True
assert dif_Square(4) == False
assert dif_Square(9) == True
assert dif_Square(16) == True
assert dif_Square(17) == False
assert dif_Square(18) == False
assert dif_Square(19) == True
assert dif_Square(20) == False
assert dif_Square(21) == True
assert dif_Square(22) == False
assert dif_Square(23) == True
assert dif_Square(24) == False
assert dif_Square(25) == True
assert dif_Square(26) == False
assert dif_Square(27) == True
assert dif_Square(28) == False
assert dif_Square(29) == True
assert dif_Square(30) == False
assert dif_Square(31) == True
assert dif_Square(32) == False
assert dif_Square(33) == True
assert dif_Square(34) == False
assert dif_Square(35) == True
assert dif_Square(36) == False
assert dif_Square(37) == True
assert dif_Square(38) == False
assert dif_Square(39) == True
assert dif_Square(40) == False
assert dif_Square(41) == True
assert dif_Square(42) == False
assert dif_Square(43) == True
assert dif_Square(44) == False
assert dif_Square(45) == True
assert dif_Square(46) == False
assert dif_Square(47) == True
assert dif_Square(48) == False
assert dif_Square(49) == True
assert dif_Square(50) == False
assert dif_Square(51) == True
assert dif_Square(52) == False
assert dif_Square(53) == True
assert dif_Square(54) == False
assert dif_Square(55) ==

code-llama-13b. fail_base: False, fail_plus: True

  """
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""

def dif_Square(n):
    for i in range(1, n):
        for j in range(1, n):
            if i**2 - j**2 == n:
                return True
    return False

print(dif_Square(5))
print(dif_Square(13))
print(dif_Square(25))
print(dif_Square(36))
print(dif_Square(49))
print(dif_Square(64))
print(dif_Square(81))
print(dif_Square(100))
print(dif_Square(144))
print(dif_Square(121))
print(dif_Square(125))
print(dif_Square(145))
print(dif_Square(169))
print(dif_Square(196))
print(dif_Square(225))
print(dif_Square(276))
print(dif_Square(300))
print(dif_Square(361))
print(dif_Square(400))
print(dif_Square(441))
print(dif_Square(484))
print(dif_Square(529))
print(dif_Square(576))
print(dif_Square(625))
print(dif_Square(676))
print(dif_Square(729))
print(dif_Square(784))
print(dif_Square(841))
print(dif_Square(900))
print(dif_Square(961))
print(dif_Square(1024))
print(dif_Square(1089))
print(dif_Square(1156))
print(dif_Square(1225))
print(dif_Square(1296))
print(dif_S

xdan-l1-chat. fail_base: False, fail_plus: True

  def dif_Square(n):
    for a in range(1, n):
        for b in range(1, n):
            if a**2 - b**2 == n:
                return True
    return False

# Test the function
assert dif_Square(5) == True

solar-10.7b-instruct. fail_base: True, fail_plus: True

  """
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""
def dif_square(num):
    # First, we'll try to find two perfect squares a and b such that a^2 - b^2 = num
    for i in range(1, int(num**0.5) + 1):
        for j in range(0, i):
            # Calculate the difference of two squares
            diff = i**2 - j**2
            # If the calculated difference is equal to the given number, return True
            if diff == num:
                return True
    # If no such squares were found, return False
    return False

assert dif_square(5) == True

gemma-2b. fail_base: True, fail_plus: True

  """
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""

def dif_Square(n):
    if n == 0:
        return False
    if n == 1:
        return True
    if n == 2:
        return True
    if n == 3:
        return True
    if n == 4:
        return True
    if n == 5:
        return True
    if n == 6:
        return True
    if n == 7:
        return True
    if n == 8:
        return True
    if n == 9:
        return True
    if n == 10:
        return True
    if n == 11:
        return True
    if n == 12:
        return True
    if n == 13:
        return True
    if n == 14:
        return True
    if n == 15:
        return True
    if n == 16:
        return True
    if n == 17:
        return True
    if n == 18:
        return True
    if n == 19:
        return True
    if n == 20:
        return True
    if n == 21:
        return True
    if n == 22:
        return True
    if n == 23:
        return True
    if n == 24:
        return True
    if n == 25:
        return True
    if n == 26:
        return True
    if n == 27:
        return True
    if n == 28:
        return True
    if n == 29:
        return True
    if n == 30:
        return True
    if n == 31:
        return True
    if n == 32:
        return True
    if n == 33:
        return True
    if n == 34:
        return True
    if n == 35:
        return True
    if n == 36:
        return True
    if n == 37:
        return True
    if n == 38:
        return True
    if n == 3

claude-3-sonnet-20240229. fail_base: True, fail_plus: True

  Here's the Python function to check whether a given number can be represented as the difference of two squares or not, along with the test case:

```python
"""
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""

import math

def dif_Square(n):
    """
    Returns True if the given number can be represented as the difference of two squares, False otherwise.
    """
    sqrt = int(math.sqrt(n))
    for i in range(sqrt + 1):
        temp = sqrt**2 - i**2
        if temp == n:
            return True
    return False

# Test case
assert dif_Square(5) == True

starcoder2-15b-oci. fail_base: True, fail_plus: True

  """
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""


def dif_Square(n):
    for i in range(n):
        if i*i > n:
            break
        if (n - i*i)**0.5 == int((n - i*i)**0.5):
            return True
    return False

starcoder2-3b. fail_base: False, fail_plus: True

  """
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""

def dif_Square(num):
    for i in range(1,num):
        for j in range(1,num):
            if i**2 - j**2 == num:
                return True
    return False

print(dif_Square(5))
print(dif_Square(3))
print(dif_Square(100))
print(dif_Square(30))
print(dif_Square(10))
print(dif_Square(1))
print(dif_Square(0))
print(dif_Square(-1))
print(dif_Square(-2))
print(dif_Square(-3))
print(dif_Square(-4))
print(dif_Square(-5))
print(dif_Square(-6))
print(dif_Square(-7))
print(dif_Square(-8))
print(dif_Square(-9))
print(dif_Square(-10))
print(dif_Square(-11))
print(dif_Square(-12))
print(dif_Square(-13))
print(dif_Square(-14))
print(dif_Square(-15))
print(dif_Square(-16))
print(dif_Square(-17))
print(dif_Square(-18))
print(dif_Square(-19))
print(dif_Square(-20))
print(dif_Square(-21))
print(dif_Square(-22))
print(dif_Square(-23))
print(dif_Square(-24))
print(dif_Square(-25))
print(dif_Square(-26))
print(dif_Square(-27))
print(dif_Square(-28))
print(dif_Square(-29))
print(dif_Square(-30))
print(dif_Square(-31))
print(dif_Square(-32))
print(dif_Square(-33))
print(dif_Square(-34))
print(dif_Square(-35))
print(dif_Square(-36))
print(dif_Square(-37))
print(dif_Square(-38))
print(dif_Square(-39))
print(dif_Square(-40))
print(dif_Square(-

speechless-starcoder2-15b. fail_base: True, fail_plus: True

  import math

def dif_Square(n):
    if n < 0:
        return False
    sqrt_n = math.sqrt(n)
    if sqrt_n.is_integer():
        return True
    return False

assert dif_Square(5) == True

gemma-7b. fail_base: True, fail_plus: True

  """
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""

def dif_Square(num):
    for i in range(1,num):
        if i**2 + (num-i)**2 == num:
            return True
    return False

opencodeinterpreter-ds-6.7b. fail_base: True, fail_plus: True

  ```python
def dif_Square(n):
    i = 0
    while i*i <= n:
        j = 0
        while j*j <= n:
            if i*i + j*j == n:
                return True
            j += 1
        i += 1
    return False

# Test the function
print(dif_Square(5))