"""
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""
def dif_Square(n):
# see https://www.quora.com/Which-numbers-can-be-expressed-as-the-difference-of-two-squares
return n % 4 != 2
[[5], [10], [15]]
[[991], [567], [13], [24], [568], [992], [569], [990], [566], [True], [989], [25], [14], [565], [23], [15], [988], [12], [11], [16], [17], [993], [564], [563], [22], [10], [994], [9], [21], [995], [996], [20], [18], [997], [8], [987], [45], [562], [570], [26], [561], [998], [19], [77], [7], [76], [560], [986], [27], [44], [571], [28], [75], [46], [78], [74], [985], [29], [572], [984], [73], [983], [79], [573], [47], [50], [982], [981], [5], [71], [49], [80], [51], [999], [30], [81], [6], [1000], [980], [1001], [1002], [82], [1003], [52], [574], [53], [1004], [70], [575], [69], [576], [979], [83], [72], [68], [43], [89], [42], [977], [33], [4], [36], [978], [3]]
code-llama-multi-7b. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""
def dif_Square(n):
for i in range(1, n + 1):
for j in range(1, n + 1):
if i * i + j * j == n:
return True
return False
if __name__ == '__main__':
print(dif_Square(5))
print(dif_Square(12))
print(dif_Square(13))
print(dif_Square(14))
print(dif_Square(15))
print(dif_Square(16))
print(dif_Square(17))
print(dif_Square(18))
print(dif_Square(19))
print(dif_Square(20))
print(dif_Square(21))
print(dif_Square(22))
print(dif_Square(23))
print(dif_Square(24))
print(dif_Square(25))
print(dif_Square(26))
print(dif_Square(27))
print(dif_Square(28))
print(dif_Square(29))
print(dif_Square(30))
print(dif_Square(31))
print(dif_Square(32))
print(dif_Square(33))
print(dif_Square(34))
print(dif_Square(35))
print(dif_Square(36))
print(dif_Square(37))
print(dif_Square(38))
print(dif_Square(39))
print(dif_Square(40))
print(dif_Square(41))
print(dif_Square(42))
print(dif_Square(43))
print(dif_Square(44
databricks--dbrx-instruct. fail_base: True, fail_plus: True
def dif_square(n):
"""
This function checks if a given number can be represented as the difference of two squares or not.
:param n: int
:return: bool
"""
if n < 0:
return False
for i in range(n + 1):
for j in range(i + 1, n + 1):
if i * i - j * j == n:
return True
return False
# Test the function
assert dif_square(5) == True
assert dif_square(4) == True
assert dif_square(3) == False
assert dif_square(0) == True
assert dif_square(-1) == False
CohereForAI--c4ai-command-r-plus. fail_base: True, fail_plus: True
def dif_Square(n):
if n < 0:
return False
for i in range(1, int(n ** 0.5) + 1):
if ((i ** 2) - (n - i ** 2) == n) or ((n - i ** 2) - (i ** 2) == n):
return True
return False
```
claude-3-haiku-20240307. fail_base: True, fail_plus: True
Here's the solution wrapped in a Python markdown block:
```python
def dif_Square(n):
"""
Checks whether the given number can be represented as the difference of two squares.
Args:
n (int): The number to be checked.
Returns:
bool: True if the number can be represented as the difference of two squares, False otherwise.
"""
for i in range(int(n ** 0.5) + 1):
j = n - i ** 2
if j >= 0 and int(j ** 0.5) ** 2 == j:
return True
return False
code-millenials-34b. fail_base: False, fail_plus: True
def dif_Square(n):
if n < 0:
return False
i = 1
while i*i <= n:
j = int((n + i*i)**0.5)
if i*i == n or (j*j - i*i) == n:
return True
i += 1
return False
# Test the function
assert dif_Square(5) == True
dolphin-2.6. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""
def dif_Square(n):
# Check if the number is a perfect square
if n < 0:
return False
else:
# Calculate the square root of the number
sqrt_n = int(n ** 0.5)
# Check if the square root is a perfect square
if sqrt_n * sqrt_n == n:
# Calculate the difference of two squares
diff = sqrt_n * sqrt_n - (sqrt_n - 1) * (sqrt_n - 1)
# Check if the difference is equal to the given number
if diff == n:
return True
else:
return False
else:
return False
# Test the function
assert dif_Square(5) == True
assert dif_Square(10) == False
assert dif_Square(16) == True
assert dif_Square(25) == True
assert dif_Square(36) == True
assert dif_Square(49) == True
assert dif_Square(64) == True
assert dif_Square(81) == True
assert dif_Square(100) == True
claude-3-opus-20240229. fail_base: True, fail_plus: True
Here's the code to solve the problem, wrapped in a markdown block:
```python
def dif_Square(n):
i = 1
while i * i <= n:
j = 1
while j * j <= n:
if i * i - j * j == n:
return True
j += 1
i += 1
return False
mixtral-8x7b-instruct. fail_base: True, fail_plus: True
def dif_Square(num):
# Initialize start and end of the range as the square root of the given number
start = int(num**0.5)
end = start + 1
# Iterate through the range and check if the difference of squares equals to the given number
for i in range(start, end):
square_diff = (i+1)**2 - i**2
if square_diff == num:
return True
elif square_diff > num:
break
# If no such pair is found, return False
return False
# Test the function
assert dif_Square(5) == True
assert dif_Square(6) == False
assert dif_Square(13) == True
assert dif_Square(100) == True
assert dif_Square(101) == False
wizardcoder-34b. fail_base: True, fail_plus: True
Here's the Python function to check whether the given number can be represented as the difference of two squares or not:
```python
def dif_Square(num):
"""
This function takes a number as input and returns True if it can be represented as the difference of two squares, otherwise False.
"""
# loop through all the numbers from 1 to the given number
for i in range(1, num+1):
# calculate the square of the current number
square1 = i**2
# check if the difference between the square of current number and the given number is also a square
if (num - square1)**0.5 == int((num - square1)**0.5):
return True
return False
```
Explanation:
- We loop through all the numbers from 1 to the given number and calculate the square of each number.
- We check if the difference between the square of the current number and the given number is also a square.
- If it is a square, we return True, else we continue the loop.
- If we have looped through all the numbers and not found a square, we return False.
Let's test the function with the given example:
```python
assert dif_Square(5) == True
```
Output:
```python
True
```
Explanation:
- For num=5, the function loops through 1, 2, 3, 4, and 5.
- For i=2, the square of 2 is 4 and the difference between 5 and 4 is 1, which is not a square.
- For i=3, the square of 3 is 9 and the difference between 5 and 9 is 4, which is not a square.
- For i=4, the square of 4 is 16 and the difference between 5 and 16 is 11, which is not a square.
- For i=5, the square of 5 is 25 and the difference between 5 and 25 is 20, which is not a square.
- The function returns False since it has looped through all the numbers and not found a square.
Therefore, the function returns False.
mixtral-8x22b-instruct-v0.1. fail_base: True, fail_plus: True
def dif_square(n):
"""
This function checks whether the given number can be represented as the difference of two squares or not.
"""
# Iterate from 1 to the square root of n
for i in range(1, int(n**0.5) + 1):
# Calculate the difference of squares
diff = i**2 - (n - i**2)
# If the difference is a perfect square, return True
if diff >= 0 and (diff**0.5).is_integer():
return True
# If no perfect square difference is found, return False
return False
# Test the function
assert dif_square(5) == True
assert dif_square(10) == False
assert dif_square(13) == True
assert dif_square(20) == False
code-llama-multi-34b. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""
def dif_Square(num):
for i in range(1, num):
if (i * i - num) % 2 == 0:
return True
return False
if __name__ == "__main__":
assert dif_Square(5) == True
assert dif_Square(10) == False
assert dif_Square(11) == False
assert dif_Square(12) == True
assert dif_Square(13) == False
assert dif_Square(14) == True
assert dif_Square(15) == True
assert dif_Square(16) == True
assert dif_Square(17) == False
assert dif_Square(18) == True
assert dif_Square(19) == False
assert dif_Square(20) == True
assert dif_Square(21) == False
assert dif_Square(22) == True
assert dif_Square(23) == False
assert dif_Square(24) == True
assert dif_Square(25) == True
assert dif_Square(26) == True
assert dif_Square(27) == False
assert dif_Square(28) == True
assert dif_Square(29) == False
assert dif_Square(30) == True
assert dif_Square(31) == False
assert dif_Square(32) == True
assert dif_Square(33) == False
assert dif_Square(34) == True
assert dif_Square(35) == True
assert dif_Square(36) == True
assert dif_Square(37) == False
assert dif_Square(38) == True
assert dif_Square(39) == False
assert dif_Square(40) == True
assert dif_Square(41) == False
assert dif_Square(42) == True
assert dif_Square(43) == False
Qwen--Qwen1.5-72B-Chat. fail_base: True, fail_plus: True
def dif_Square(n):
# Check if the number can be represented as the difference of two squares
# A number can be represented as a difference of two squares if and only if it is not a multiple of 4
return n % 4 != 0
# Test cases
assert dif_Square(5) == True
assert dif_Square(4) == False
assert dif_Square(10) == True
assert dif_Square(12) == False
mistral-large-latest. fail_base: False, fail_plus: True
Sure, I'd be happy to help with that. Here's a Python function that checks whether a given number can be represented as the difference of two squares:
```python
def dif_Square(n):
# Iterate from 0 to n
for i in range(n + 1):
# Check if the number can be represented as the difference of two squares
if (i * i - (i - 1) * (i - 1) == n) or (i * i - (i + 1) * (i + 1) == n):
return True
# If no such pair is found, return False
return False
```
This function works by iterating over all numbers from 0 to `n` and checking if the difference between the square of the current number and the square of the next (or previous) number is equal to `n`. If such a pair is found, the function returns `True`; otherwise, it returns `False`.
You can test the function with your assert statement like this:
```python
assert dif_Square(5) == True
```
This assertion will not raise an error because `dif_Square(5)` does indeed return `True`, as 5 can be represented as the difference of the squares of 3 and 2 (3^2 - 2^2 = 5).
codegen-2b. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""
def dif_Square(n):
if n == 0:
return True
if n == 1:
return False
if n == 2:
return True
if n == 3:
return True
if n == 4:
return True
if n == 5:
return True
if n == 6:
return True
if n == 7:
return True
if n == 8:
return True
if n == 9:
return True
if n == 10:
return True
if n == 11:
return True
if n == 12:
return True
if n == 13:
return True
if n == 14:
return True
if n == 15:
return True
if n == 16:
return True
if n == 17:
return True
if n == 18:
return True
if n == 19:
return True
if n == 20:
return True
if n == 21:
return True
if n == 22:
return True
if n == 23:
return True
if n == 24:
return True
if n == 25:
return True
if n == 26:
return True
if n == 27:
return True
if n == 28:
return True
if n == 29:
return True
if n == 30:
return True
if n == 31:
return True
if n == 32:
return True
if n == 33:
return True
if n == 34:
return True
if n == 35:
return True
if n == 36:
return True
if n == 37:
return True
if n == 38:
return True
if n == 39:
return True
if n == 40:
return True
if n == 41:
return True
if n == 42:
return True
if n == 43:
return True
if n == 44:
return True
if n == 45:
HuggingFaceH4--starchat2-15b-v0.1. fail_base: True, fail_plus: True
def dif_Square(n):
"""
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""
# If the number is negative, it cannot be represented as the difference of two squares
if n < 0:
return False
# Iterate from 0 to the square root of the number
for i in range(int(n**0.5) + 1):
# Calculate the square of the current number and subtract it from the given number
square = i * i
difference = n - square
# If the difference is a perfect square, return True
if (difference**0.5).is_integer():
return True
# If no pair of squares results in a difference that is a perfect square, return False
return False
# Test the function
assert dif_Square(5) == True
assert dif_Square(10) == True
assert dif_Square(15) == True
assert dif_Square(20) == True
assert dif_Square(25) == True
assert dif_Square(30) == False
codegemma-7b. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""
import math
def dif_Square(n):
for i in range(1, n):
if (i * i) + (int(math.sqrt(n - i * i)) * int(math.sqrt(n - i * i)) == n):
return True
return False
code-llama-multi-13b. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""
def dif_Square(n):
for i in range(1, n):
for j in range(1, n):
if i**2 + j**2 == n:
return True
return False
if __name__ == '__main__':
print(dif_Square(5))
print(dif_Square(10))
print(dif_Square(11))
print(dif_Square(12))
print(dif_Square(13))
print(dif_Square(14))
print(dif_Square(15))
print(dif_Square(16))
print(dif_Square(17))
print(dif_Square(18))
print(dif_Square(19))
print(dif_Square(20))
print(dif_Square(21))
print(dif_Square(22))
print(dif_Square(23))
print(dif_Square(24))
print(dif_Square(25))
print(dif_Square(26))
print(dif_Square(27))
print(dif_Square(28))
print(dif_Square(29))
print(dif_Square(30))
print(dif_Square(31))
print(dif_Square(32))
print(dif_Square(33))
print(dif_Square(34))
print(dif_Square(35))
print(dif_Square(36))
print(dif_Square(37))
print(dif_Square(38))
print(dif_Square(39))
print(dif_Square(40))
print(dif_Square(41))
print(dif_Square(42))
print(dif
deepseek-coder-6.7b-instruct. fail_base: True, fail_plus: True
Here is the Python function in a markdown style code block:
```python
def dif_Square(n):
i = 0
while i*i <= n:
j = 0
while j*j <= n:
if i*i - j*j == n:
return True
j += 1
i += 1
return False
# Test the function
assert dif_Square(5) == True
```
This function `dif_Square(n)` checks if a given number `n` can be represented as the difference of two squares. It does this by iterating over all possible values of `i` and `j` (where `i` and `j` are the two numbers that can be squared to get `n`), and checking if `i*i - j*j` equals `n`. If it does, the function returns `True`, otherwise it returns `False`.
The test `assert dif_Square(5) == True` checks if the function works correctly for the number 5. If the function returns `True`, the test passes, otherwise it fails.
open-hermes-2.5-code-290k-13b. fail_base: True, fail_plus: True
def dif_Square(n):
i = 0
while i*i <= n:
j = int((n - i*i)**0.5)
if i*i + j*j == n:
return True
i += 1
return False
assert dif_Square(5) == True
codet5p-6b. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""
def dif_Square(n):
for i in range(1,n):
if i*i == n:
return True
elif i*i > n:
return False
return False
print(dif_Square(5))
print(dif_Square(6))
print(dif_Square(7))
print(dif_Square(8))
print(dif_Square(9))
print(dif_Square(10))
print(dif_Square(11))
print(dif_Square(12))
print(dif_Square(13))
print(dif_Square(14))
print(dif_Square(15))
print(dif_Square(16))
print(dif_Square(17))
print(dif_Square(18))
print(dif_Square(19))
print(dif_Square(20))
print(dif_Square(21))
print(dif_Square(22))
print(dif_Square(23))
print(dif_Square(24))
print(dif_Square(25))
print(dif_Square(26))
print(dif_Square(27))
print(dif_Square(28))
print(dif_Square(29))
print(dif_Square(30))
print(dif_Square(31))
print(dif_Square(32))
print(dif_Square(33))
print(dif_Square(34))
print(dif_Square(35))
print(dif_Square(36))
print(dif_Square(37))
print(dif_Square(38))
print(dif_Square(39))
print(dif_Square(40))
print(dif_Square(41))
print(dif_Square(42))
print(dif_Square(43))
print(dif_Square(44))
print(dif_Square(45))
print(dif_Square(46))
print(dif_Square(47))
print(dif_Square(48))
print(dif_Square(49))
print(dif_Square(50))
codegemma-7b-it. fail_base: False, fail_plus: True
def dif_Square(num):
for i in range(num):
for j in range(num):
if i**2 - j**2 == num:
return True
return False
assert dif_Square(5) == True
assert dif_Square(10) == True
assert dif_Square(15) == False
mistralai--Mistral-7B-Instruct-v0.2. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""
def dif_Square(n):
"""
Checks if a given number can be represented as the difference of two squares.
"""
for a in range(int(pow(10, 0.5))):
b = int(pow(a, 2)) + int(pow(int(pow(a, 2) + 1, 0.5)) ** 2)
if b > n:
break
if b == n:
return True
return False
# Test case
assert dif_Square(5) == True
xwincoder-34b. fail_base: True, fail_plus: True
def dif_Square(n):
if n < 0:
return False
for i in range(1, int(n**0.5) + 1):
if (n - i**2)**0.5 == int((n - i**2)**0.5):
return True
return False
assert dif_Square(5) == True
wizardcoder-15b. fail_base: True, fail_plus: True
Here's the Python function to check whether the given number can be represented as the difference of two squares or not:
```python
def dif_Square(num):
# Check if the number is a perfect square
if int(num**0.5)**2 == num:
return False
# Check if the number can be represented as the difference of two squares
for i in range(2, int(num**0.5)+1):
if num % i == 0:
if (i**2 + (num//i)**2) == num:
return True
return False
```
The function first checks if the given number is a perfect square. If it is, then it cannot be represented as the difference of two squares. If it is not a perfect square, then it checks if the number can be represented as the difference of two squares. It does this by iterating through all the numbers from 2 to the square root of the given number. For each number, it checks if the given number is divisible by that number. If it is, then it checks if the difference between the squares of the two numbers is equal to the given number. If it is, then the given number can be represented as the difference of two squares. If none of the numbers from 2 to the square root of the given number divide the given number evenly, then the given number cannot be represented as the difference of two squares.
code-llama-34b. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""
def dif_Square(num):
for i in range(1, num):
if (i * i - num) ** 0.5 == int((i * i - num) ** 0.5):
return True
return False
assert dif_Square(5) == True
deepseek-coder-33b-instruct. fail_base: True, fail_plus: True
Here is the Python function to check whether the given number can be represented as the difference of two squares or not.
```python
def dif_Square(n):
i = 1
while i * i <= n:
j = 1
while j * j <= i * i:
if i * i - j * j == n:
return True
j += 1
i += 1
return False
```
This function works by iterating over all possible pairs of squares (i, j) where i^2 - j^2. If it finds a pair where the difference equals the input number, it returns True. If it iterates over all possible pairs without finding a match, it returns False.
You can test the function with the following code:
```python
print(dif_Square(5)) # Output: True
```
phi-2. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""
def dif_Square(n):
for i in range(1, int(n**0.5)+1):
if n-i*i >= 0:
return True
return False
assert dif_Square(5) == True
assert dif_Square(10) == False
assert dif_Square(25) == True
assert dif_Square(36) == True
assert dif_Square(49) == True
assert dif_Square(64) == True
assert dif_Square(81) == True
assert dif_Square(100) == True
assert dif_Square(101) == False
assert dif_Square(102) == False
assert dif_Square(103) == False
assert dif_Square(104) == False
assert dif_Square(105) == False
assert dif_Square(106) == False
assert dif_Square(107) == False
assert dif_Square(108) == False
assert dif_Square(109) == False
assert dif_Square(110) == False
assert dif_Square(111) == False
assert dif_Square(112) == False
assert dif_Square(113) == False
assert dif_Square(114) == False
assert dif_Square(115) == False
assert dif_Square(116) == False
assert dif_Square(117) == False
assert dif_Square(118) == False
assert dif_Square(119) == False
assert dif_Square(120) == False
assert dif_Square(121) == True
assert dif_Square(122) == True
assert dif_Square(123) == True
assert dif_Square(124) == True
assert dif_Square(125) == True
assert dif_Square(126) == True
assert dif_Square(127) == True
assert dif_Square(128) == True
assert dif_Square(129) == True
assert dif_Square(130) == True
assert dif_Square(131) == True
assert dif_Square(132) == True
assert dif_Square(133) == True
assert dif_Square(134) == True
assert
codet5p-2b. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""
def dif_Square(num):
if num == 0:
return True
if num < 0:
return False
if num % 2 == 0:
return False
else:
return dif_Square(num-1)
print(dif_Square(5))
print(dif_Square(6))
print(dif_Square(7))
print(dif_Square(8))
print(dif_Square(9))
print(dif_Square(10))
print(dif_Square(11))
print(dif_Square(12))
print(dif_Square(13))
print(dif_Square(14))
print(dif_Square(15))
print(dif_Square(16))
print(dif_Square(17))
print(dif_Square(18))
print(dif_Square(19))
print(dif_Square(20))
print(dif_Square(21))
print(dif_Square(22))
print(dif_Square(23))
print(dif_Square(24))
print(dif_Square(25))
print(dif_Square(26))
print(dif_Square(27))
print(dif_Square(28))
print(dif_Square(29))
print(dif_Square(30))
print(dif_Square(31))
print(dif_Square(32))
print(dif_Square(33))
print(dif_Square(34))
print(dif_Square(35))
print(dif_Square(36))
print(dif_Square(37))
print(dif_Square(38))
print(dif_Square(39))
print(dif_Square(40))
print(dif_Square(41))
print(dif_Square(42))
print(dif_Square(43))
print(dif_Square(44))
print(dif_Square(45))
print(dif_Square(46))
print(dif_Square(47))
print(dif_Square(48))
print(dif_Square(49))
bigcode--starcoder2-15b-instruct-v0.1. fail_base: True, fail_plus: True
def dif_Square(num):
for i in range(int(num ** 0.5) + 1):
if (num - i ** 2) ** 0.5 % 1 == 0:
return True
return False
codegemma-2b. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""
def dif_Square(n):
if n == 0:
return True
if n < 0:
return False
for i in range(1, n):
if i * i + (n - i) * (n - i) == n:
return True
return False
white-rabbit-neo-33b-v1. fail_base: True, fail_plus: True
def dif_Square(num):
# Check if the number is a perfect square
if num < 0:
return False
elif num == 0:
return True
else:
# Check if the number can be represented as the difference of two squares
for i in range(1, int(num**0.5) + 1):
if (num - i*i)**0.5 % 1 == 0:
return True
return False
# Test the function
assert dif_Square(5) == True
assert dif_Square(17) == True
assert dif_Square(25) == True
assert dif_Square(33) == False
assert dif_Square(0) == True
assert dif_Square(-1) == False
microsoft--Phi-3-mini-4k-instruct. fail_base: True, fail_plus: True
def dif_Square(num):
"""
Check whether the given number can be represented as the difference of two squares.
Args:
num (int): The number to check.
Returns:
bool: True if the number can be represented as the difference of two squares, False otherwise.
"""
for i in range(int(num**0.5) + 1):
j = (num - i**2)**0.5
if int(j)**2 == num - i**2:
return True
return False
# Test cases
assert dif_Square(5) == True
assert dif_Square(10) == True
assert dif_Square(13) == False
assert dif_Square(100) == True
speechless-codellama-34b. fail_base: True, fail_plus: True
def dif_Square(num):
i = 1
while i*i <= num:
j = 1
while j*j <= num:
if i*i + j*j == num:
return True
j += 1
i += 1
return False
assert dif_Square(5) == True
```
Explanation:
The function `dif_Square` takes an integer `num` as input and checks whether it can be represented as the difference of two squares or not. It uses two nested loops to iterate over all possible pairs of integers `i` and `j` such that `i*i + j*j <= num`. If it finds a pair that satisfies the condition, it returns `True`. If it iterates through all possible pairs without finding a match, it returns `False`.
The `assert` statement at the end of the code checks that the function works correctly by asserting that `dif_Square(5)` returns `True`.
meta-llama-3-70b-instruct. fail_base: False, fail_plus: True
def dif_Square(n):
i = 1
while i * i <= n:
if (i * i + n) ** 0.5 == int((i * i + n) ** 0.5):
return True
i += 1
return False
assert dif_Square(5) == True
stable-code-3b. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""
def dif_Square(num):
for i in range(1, num):
if i**2 == num - i**2:
return True
return False
print(dif_Square(5))
print(dif_Square(8))
print(dif_Square(9))
print(dif_Square(10))
print(dif_Square(11))
print(dif_Square(12))
print(dif_Square(13))
print(dif_Square(14))
print(dif_Square(15))
print(dif_Square(16))
print(dif_Square(17))
print(dif_Square(18))
print(dif_Square(19))
print(dif_Square(20))
print(dif_Square(21))
print(dif_Square(22))
print(dif_Square(23))
print(dif_Square(24))
print(dif_Square(25))
print(dif_Square(26))
print(dif_Square(27))
print(dif_Square(28))
print(dif_Square(29))
print(dif_Square(30))
print(dif_Square(31))
print(dif_Square(32))
print(dif_Square(33))
print(dif_Square(34))
print(dif_Square(35))
print(dif_Square(36))
print(dif_Square(37))
print(dif_Square(38))
print(dif_Square(39))
print(dif_Square(40))
print(dif_Square(41))
print(dif_Square(42))
print(dif_Square(43))
print(dif_Square(44))
print(dif_Square(45))
print(dif_Square(46))
print(dif_Square(47))
print(dif_Square(48))
print(dif_Square
codegen-6b. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""
def dif_Square(n):
for i in range(1,n):
if i*i == n:
return True
elif i*i < n:
if (n-i*i) == (i+i):
return True
return False
assert dif_Square(5) == True
assert dif_Square(6) == False
assert dif_Square(7) == True
assert dif_Square(8) == False
assert dif_Square(9) == True
assert dif_Square(10) == False
assert dif_Square(11) == True
assert dif_Square(12) == False
assert dif_Square(13) == True
assert dif_Square(14) == False
assert dif_Square(15) == True
assert dif_Square(16) == False
assert dif_Square(17) == True
assert dif_Square(18) == False
assert dif_Square(19) == True
assert dif_Square(20) == False
assert dif_Square(21) == True
assert dif_Square(22) == False
assert dif_Square(23) == True
assert dif_Square(24) == False
assert dif_Square(25) == True
assert dif_Square(26) == False
assert dif_Square(27) == True
assert dif_Square(28) == False
assert dif_Square(29) == True
assert dif_Square(30) == False
assert dif_Square(31) == True
assert dif_Square(32) == False
assert dif_Square(33) == True
assert dif_Square(34) == False
assert dif_Square(35) == True
assert dif_Square(36) == False
assert dif_Square(37) == True
assert dif_Square(38) == False
assert dif_Square(39) == True
assert dif_Square(40) == False
assert dif_Square(41) == True
assert dif_Square(42) == False
assert dif_Square(43) == True
assert dif_Square(44) == False
assert dif
gpt-4-1106-preview. fail_base: False, fail_plus: False
"""
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""
import math
def dif_Square(n):
# A number can be expressed as a difference of two squares
# if and only if it is not of the form 4k+2 for any integer k.
# This is because n = x^2 - y^2 = (x + y)(x - y)
# and for n to be expressible as a difference of two squares,
# both (x + y) and (x - y) must be integers that differ by an even number.
# If n is of the form 4k+2, then one of (x + y) or (x - y) would have to be odd,
# which is not possible.
return n % 4 != 2
# Example usage:
# assert dif_Square(5) == True
gemma-7b-it. fail_base: True, fail_plus: True
def dif_Square(n):
"""
Write a python function to check whether the given number can be represented as the difference of two squares or not.
Args:
n: The number to check.
Returns:
True if n can be represented as the difference of two squares, False otherwise.
"""
# Check if n is even. If it is not, it cannot be represented as the difference of two squares.
if n % 2 != 0:
return False
# Iterate over the squares of numbers from 1 to the square root of n.
for i in range(1, int(n ** 0.5) + 1):
square1 = i ** 2
square2 = (int((square1 + n) ** 0.5)) ** 2
# If the sum of squares is equal to n, return True.
if square1 + square2 == n:
return True
# If no solution is found, return False.
return False
opencodeinterpreter-ds-33b. fail_base: True, fail_plus: True
```python
def dif_Square(n):
i = 1
while i*i <= n:
j = int((n - i*i)**0.5)
if i*i + j*j == n:
return True
i += 1
return False
# Test the function
print(dif_Square(5)) # Output: True
openchat. fail_base: False, fail_plus: True
def dif_Square(n):
for i in range(1, n):
if i * i - (n - i) * (n - i) == n:
return True
return False
# Test case
assert dif_Square(5) == True
speechless-starcoder2-7b. fail_base: True, fail_plus: True
def dif_Square(n):
for i in range(int(n**0.5)+1):
for j in range(int(n**0.5)+1):
if i**2 + j**2 == n:
return True
return False
assert dif_Square(5) == True
wizardcoder-7b. fail_base: True, fail_plus: True
Here's the Python function to check whether the given number can be represented as the difference of two squares or not:
```python
def dif_Square(n):
for i in range(1, int(n/2)+1):
for j in range(1, int(n/2)+1):
if i*i + j*j == n:
return True
return False
```
Explanation:
We are iterating through all possible pairs of integers i and j such that i <= j and checking if their sum of squares is equal to the given number n. If we find a pair of integers whose sum of squares is equal to n, we return True. If we don't find any such pair, we return False. This is because any number can be represented as the difference of two squares if and only if there exist two integers whose sum of squares is equal to the given number.
octocoder. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""
def dif_Square(n):
if n == 0:
return True
for i in range(1, n):
if i*i == n or (n-i*i)%(i+1) == 0:
return True
return False
gemma-1.1-7b-it. fail_base: True, fail_plus: True
def dif_Square(n):
if n < 1:
return False
for i in range(1, int(n**0.5) + 1):
if n == i**2 - (n-i)**2:
return True
return False
assert dif_Square(5) == True
deepseek-coder-6.7b-base. fail_base: False, fail_plus: True
"""
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""
def dif_Square(n):
for i in range(1, n):
for j in range(1, n):
if i * i - j * j == n:
return True
return False
print(dif_Square(5))
codegen-16b. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""
def dif_Square(n):
for i in range(1,n):
if i*i == n:
return True
elif i*i < n:
if (n-i*i) == (i+i):
return True
return False
assert dif_Square(5) == True
assert dif_Square(6) == False
assert dif_Square(7) == True
assert dif_Square(8) == False
assert dif_Square(9) == True
assert dif_Square(10) == False
assert dif_Square(11) == True
assert dif_Square(12) == False
assert dif_Square(13) == True
assert dif_Square(14) == False
assert dif_Square(15) == True
assert dif_Square(16) == False
assert dif_Square(17) == True
assert dif_Square(18) == False
assert dif_Square(19) == True
assert dif_Square(20) == False
assert dif_Square(21) == True
assert dif_Square(22) == False
assert dif_Square(23) == True
assert dif_Square(24) == False
assert dif_Square(25) == True
assert dif_Square(26) == False
assert dif_Square(27) == True
assert dif_Square(28) == False
assert dif_Square(29) == True
assert dif_Square(30) == False
assert dif_Square(31) == True
assert dif_Square(32) == False
assert dif_Square(33) == True
assert dif_Square(34) == False
assert dif_Square(35) == True
assert dif_Square(36) == False
assert dif_Square(37) == True
assert dif_Square(38) == False
assert dif_Square(39) == True
assert dif_Square(40) == False
assert dif_Square(41) == True
assert dif_Square(42) == False
assert dif_Square(43) == True
assert dif_Square(44) == False
assert dif
mistral-7b. fail_base: False, fail_plus: True
"""
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""
def dif_Square(num):
for i in range(1, num):
for j in range(1, num):
if i * i - j * j == num:
return True
return False
print(dif_Square(5))
speechless-mistral-7b. fail_base: True, fail_plus: True
def dif_Square(n):
for i in range(int(n**0.5)+1):
for j in range(int(n**0.5)+1):
if i*i - j*j == n:
return True
return False
assert dif_Square(5) == True
```
This Python function checks whether the given number can be represented as the difference of two squares or not. It uses nested loops to iterate over all possible pairs of integers i and j such that i*i - j*j equals the given number. If such a pair is found, the function returns True; otherwise, it returns False. The function is tested with the assert statement to ensure that it correctly identifies the number 5 as a number that can be represented as the difference of two squares.
codet5p-16b. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""
def dif_Square(n):
for i in range(1, n):
if i**2 - n == 0:
return True
return False
assert dif_Square(5) == True
assert dif_Square(4) == False
assert dif_Square(9) == True
assert dif_Square(16) == True
assert dif_Square(17) == False
assert dif_Square(18) == False
assert dif_Square(19) == True
assert dif_Square(20) == False
assert dif_Square(21) == True
assert dif_Square(22) == False
assert dif_Square(23) == True
assert dif_Square(24) == False
assert dif_Square(25) == True
assert dif_Square(26) == False
assert dif_Square(27) == True
assert dif_Square(28) == False
assert dif_Square(29) == True
assert dif_Square(30) == False
assert dif_Square(31) == True
assert dif_Square(32) == False
assert dif_Square(33) == True
assert dif_Square(34) == False
assert dif_Square(35) == True
assert dif_Square(36) == False
assert dif_Square(37) == True
assert dif_Square(38) == False
assert dif_Square(39) == True
assert dif_Square(40) == False
assert dif_Square(41) == True
assert dif_Square(42) == False
assert dif_Square(43) == True
assert dif_Square(44) == False
assert dif_Square(45) == True
assert dif_Square(46) == False
assert dif_Square(47) == True
assert dif_Square(48) == False
assert dif_Square(49) == True
assert dif_Square(50) == False
assert dif_Square(51) == True
assert dif_Square(52) == False
assert dif_Square(53) == True
assert dif_Square(54) == False
assert dif_Square(55) ==
code-llama-13b. fail_base: False, fail_plus: True
"""
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""
def dif_Square(n):
for i in range(1, n):
for j in range(1, n):
if i**2 - j**2 == n:
return True
return False
print(dif_Square(5))
print(dif_Square(13))
print(dif_Square(25))
print(dif_Square(36))
print(dif_Square(49))
print(dif_Square(64))
print(dif_Square(81))
print(dif_Square(100))
print(dif_Square(144))
print(dif_Square(121))
print(dif_Square(125))
print(dif_Square(145))
print(dif_Square(169))
print(dif_Square(196))
print(dif_Square(225))
print(dif_Square(276))
print(dif_Square(300))
print(dif_Square(361))
print(dif_Square(400))
print(dif_Square(441))
print(dif_Square(484))
print(dif_Square(529))
print(dif_Square(576))
print(dif_Square(625))
print(dif_Square(676))
print(dif_Square(729))
print(dif_Square(784))
print(dif_Square(841))
print(dif_Square(900))
print(dif_Square(961))
print(dif_Square(1024))
print(dif_Square(1089))
print(dif_Square(1156))
print(dif_Square(1225))
print(dif_Square(1296))
print(dif_S
xdan-l1-chat. fail_base: False, fail_plus: True
def dif_Square(n):
for a in range(1, n):
for b in range(1, n):
if a**2 - b**2 == n:
return True
return False
# Test the function
assert dif_Square(5) == True
solar-10.7b-instruct. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""
def dif_square(num):
# First, we'll try to find two perfect squares a and b such that a^2 - b^2 = num
for i in range(1, int(num**0.5) + 1):
for j in range(0, i):
# Calculate the difference of two squares
diff = i**2 - j**2
# If the calculated difference is equal to the given number, return True
if diff == num:
return True
# If no such squares were found, return False
return False
assert dif_square(5) == True
gemma-2b. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""
def dif_Square(n):
if n == 0:
return False
if n == 1:
return True
if n == 2:
return True
if n == 3:
return True
if n == 4:
return True
if n == 5:
return True
if n == 6:
return True
if n == 7:
return True
if n == 8:
return True
if n == 9:
return True
if n == 10:
return True
if n == 11:
return True
if n == 12:
return True
if n == 13:
return True
if n == 14:
return True
if n == 15:
return True
if n == 16:
return True
if n == 17:
return True
if n == 18:
return True
if n == 19:
return True
if n == 20:
return True
if n == 21:
return True
if n == 22:
return True
if n == 23:
return True
if n == 24:
return True
if n == 25:
return True
if n == 26:
return True
if n == 27:
return True
if n == 28:
return True
if n == 29:
return True
if n == 30:
return True
if n == 31:
return True
if n == 32:
return True
if n == 33:
return True
if n == 34:
return True
if n == 35:
return True
if n == 36:
return True
if n == 37:
return True
if n == 38:
return True
if n == 3
claude-3-sonnet-20240229. fail_base: True, fail_plus: True
Here's the Python function to check whether a given number can be represented as the difference of two squares or not, along with the test case:
```python
"""
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""
import math
def dif_Square(n):
"""
Returns True if the given number can be represented as the difference of two squares, False otherwise.
"""
sqrt = int(math.sqrt(n))
for i in range(sqrt + 1):
temp = sqrt**2 - i**2
if temp == n:
return True
return False
# Test case
assert dif_Square(5) == True
starcoder2-15b-oci. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""
def dif_Square(n):
for i in range(n):
if i*i > n:
break
if (n - i*i)**0.5 == int((n - i*i)**0.5):
return True
return False
starcoder2-3b. fail_base: False, fail_plus: True
"""
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""
def dif_Square(num):
for i in range(1,num):
for j in range(1,num):
if i**2 - j**2 == num:
return True
return False
print(dif_Square(5))
print(dif_Square(3))
print(dif_Square(100))
print(dif_Square(30))
print(dif_Square(10))
print(dif_Square(1))
print(dif_Square(0))
print(dif_Square(-1))
print(dif_Square(-2))
print(dif_Square(-3))
print(dif_Square(-4))
print(dif_Square(-5))
print(dif_Square(-6))
print(dif_Square(-7))
print(dif_Square(-8))
print(dif_Square(-9))
print(dif_Square(-10))
print(dif_Square(-11))
print(dif_Square(-12))
print(dif_Square(-13))
print(dif_Square(-14))
print(dif_Square(-15))
print(dif_Square(-16))
print(dif_Square(-17))
print(dif_Square(-18))
print(dif_Square(-19))
print(dif_Square(-20))
print(dif_Square(-21))
print(dif_Square(-22))
print(dif_Square(-23))
print(dif_Square(-24))
print(dif_Square(-25))
print(dif_Square(-26))
print(dif_Square(-27))
print(dif_Square(-28))
print(dif_Square(-29))
print(dif_Square(-30))
print(dif_Square(-31))
print(dif_Square(-32))
print(dif_Square(-33))
print(dif_Square(-34))
print(dif_Square(-35))
print(dif_Square(-36))
print(dif_Square(-37))
print(dif_Square(-38))
print(dif_Square(-39))
print(dif_Square(-40))
print(dif_Square(-
speechless-starcoder2-15b. fail_base: True, fail_plus: True
import math
def dif_Square(n):
if n < 0:
return False
sqrt_n = math.sqrt(n)
if sqrt_n.is_integer():
return True
return False
assert dif_Square(5) == True
gemma-7b. fail_base: True, fail_plus: True
"""
Write a python function to check whether the given number can be represented as the difference of two squares or not.
assert dif_Square(5) == True
"""
def dif_Square(num):
for i in range(1,num):
if i**2 + (num-i)**2 == num:
return True
return False
opencodeinterpreter-ds-6.7b. fail_base: True, fail_plus: True
```python
def dif_Square(n):
i = 0
while i*i <= n:
j = 0
while j*j <= n:
if i*i + j*j == n:
return True
j += 1
i += 1
return False
# Test the function
print(dif_Square(5))