"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Diff(n):
return n % 11 == 0
[[12345], [1212112], [1212]]
[[12345678901234567890], [98765432109876543210], [-1212], [-12345], [-12345678901234567890], [987654321098765432109876543210], [-123456789012345678901234567890], [123456789012345678901234567890], [-987654321098765432109876543210], [9876543210987654321098765432110], [9876543210987654321098765432101], [-9876543210987654321098765432110], [-9876543210987654321098765432101], [-1000], [1001], [0], [-65], [1002], [-12345678901234567889], [True], [-56], [98765432109876543209], [9876543210987654321098765432102], [-64], [-9876543210987654321098765432100], [-12344], [-63], [987654321098765432109876543211], [False], [-999], [98765432109876543211], [-57], [-66], [-55], [-123456789012345678901234567891], [-987654321098765432109876543211], [123456789012345678901234567891], [-67], [-39], [61], [987654321098765432109876543209], [-12343], [987654321098765432109876543208], [-54], [-58], [987654321098765432109876543212], [9876543210987654321098765432103], [-12345678901234567891], [-62], [-9876543210987654321098765432111], [-12345678901234567888], [12345678901234567891], [12345678901234567892], [1], [987654321098765432109876543214], [98765432109876543212], [-9876543210987654321098765432102], [-9876543210987654321098765432099], [81], [987654321098765432109876543213], [9876543210987654321098765432105], [-9876543210987654321098765432112], [123456789012345678901234567889], [9876543210987654321098765432104], [-59], [-61], [-9876543210987654321098765432098], [-1213], [96], [1000], [98765432109876543208], [12345678901234567889], [-123456789012345678901234567892], [-38], [-987654321098765432109876543208], [-123456789012345678901234567893], [-987654321098765432109876543212], [12345678901234567893], [999], [-60], [987654321098765432109876543215], [-40], [-53], [100], [82], [-12346], [80], [-52], [-78], [-123456789012345678901234567889], [-12342], [60], [-68], [9876543210987654321098765432100], [-9876543210987654321098765432113], [-123456789012345678901234567888], [1003], [47], [79], [59], [9876543210987654321098765432108], [36], [37], [9876543210987654321098765432107], [2], [12345678901234567894], [98765432109876543213], [-12347], [-1211], [-88], [1004], [98765432109876543214], [-51], [-998], [-50], [-9876543210987654321098765432109]]
code-llama-multi-7b. fail_base: False, fail_plus: False
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Diff(num):
if num % 11 == 0:
return True
else:
return False
if __name__ == '__main__':
print(is_Diff(12345))
print(is_Diff(123456))
print(is_Diff(1234567))
print(is_Diff(12345678))
print(is_Diff(123456789))
print(is_Diff(1234567890))
print(is_Diff(12345678901))
print(is_Diff(123456789012))
print(is_Diff(1234567890123))
print(is_Diff(12345678901234))
print(is_Diff(123456789012345))
print(is_Diff(1234567890123456))
print(is_Diff(12345678901234567))
print(is_Diff(123456789012345678))
print(is_Diff(1234567890123456789))
print(is_Diff(12345678901234567890))
print(is_Diff(123456789012345678901))
print(is_Diff(1234567890123456789012))
print(is_Diff(12345678901234567890123))
print(is_Diff(123456789012345678901
databricks--dbrx-instruct. fail_base: True, fail_plus: True
def is_divisible_by_eleven(number):
"""
This function checks if a number is divisible by 11.
:param number: int
:return: bool
"""
return number % 11 == 0
# Test the function
assert is_divisible_by_eleven(11) is True
assert is_divisible_by_eleven(22) is True
assert is_divisible_by_eleven(33) is True
assert is_divisible_by_eleven(12345) is False
CohereForAI--c4ai-command-r-plus. fail_base: True, fail_plus: True
def is_divisible_by_11(num):
"""
Checks if a given number is divisible by 11.
Args:
num (int): The number to be checked.
Returns:
bool: True if the number is divisible by 11, False otherwise.
"""
return num % 11 == 0
def test_is_divisible_by_11():
assert is_divisible_by_11(11) == True
assert is_divisible_by_11(12345) == False
print("All tests passed!")
test_is_divisible_by_11()
claude-3-haiku-20240307. fail_base: True, fail_plus: True
Here's the solution wrapped in a Python markdown block:
```python
def is_divisible_by_11(num):
"""
Checks if a given number is divisible by 11.
Args:
num (int): The number to be checked.
Returns:
bool: True if the number is divisible by 11, False otherwise.
"""
return num % 11 == 0
# Test the function
assert is_divisible_by_11(12345) == False
code-millenials-34b. fail_base: True, fail_plus: True
def is_divisible_by_11(n):
return n % 11 == 0
assert is_divisible_by_11(12345) == False
dolphin-2.6. fail_base: True, fail_plus: True
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Divisible(num):
if num % 11 == 0:
return True
else:
return False
assert is_Divisible(12345) == False
claude-3-opus-20240229. fail_base: False, fail_plus: True
Here's the code to solve the problem, wrapped in a markdown block:
```python
def is_Diff(num):
num_str = str(num)
even_sum = sum(int(digit) for digit in num_str[::2])
odd_sum = sum(int(digit) for digit in num_str[1::2])
return abs(even_sum - odd_sum) % 11 == 0
mixtral-8x7b-instruct. fail_base: True, fail_plus: True
def is_divisible_by_11(n):
"""
This function checks if a number is divisible by 11.
:param n: The number to check.
:return: True if the number is divisible by 1
wizardcoder-34b. fail_base: False, fail_plus: False
Here's the Python function to find whether a number is divisible by 11:
```python
def is_Diff(num):
"""
This function takes a number as input and returns True if it is divisible by 11, otherwise False.
"""
if num % 11 == 0:
return True
else:
return False
```
We can test the function using the given assertion:
```python
assert is_Diff(12345) == False
```
This assertion will pass because 12345 is not divisible by 11.
mixtral-8x22b-instruct-v0.1. fail_base: True, fail_plus: True
def is_divisible_by_11(n):
"""
Function to check if a number is divisible by 11.
"""
# Convert the number to a string
n = str(n)
# Calculate the difference between the sum of digits at odd and even places
diff = sum(int(n[i]) for i in range(0, len(n), 2)) - sum(int(n[i]) for i in range(1, len(n), 2))
# If the difference is divisible by 11, then the number is divisible by 11
return diff % 11 == 0
# Test the function
assert is_divisible_by_11(12345) == False
assert is_divisible_by_11(121) == True
assert is_divisible_by_11(1111) == True
assert is_divisible_by_11(1234) == False
code-llama-multi-34b. fail_base: False, fail_plus: False
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Diff(num):
if num % 11 == 0:
return True
else:
return False
print(is_Diff(12345))
Qwen--Qwen1.5-72B-Chat. fail_base: True, fail_plus: True
def is_divisible_by_11(number):
"""
Returns True if the given number is divisible by 11, False otherwise.
"""
return number % 11 == 0
# Test case provided
assert is_divisible_by_11(12345) == False
mistral-large-latest. fail_base: True, fail_plus: True
Sure, I can help with that. Here's a Python function that checks if a number is divisible by 11. The function uses the fact that a number is divisible by 11 if the difference between the sum of its digits in the odd places and the sum of its digits in the even places is either 0 or divisible by 11.
```python
def is_divisible_by_11(n):
odd_sum = 0
even_sum = 0
digits = [int(digit) for digit in str(n)]
for index, digit in enumerate(digits):
if index % 2 == 0:
odd_sum += digit
else:
even_sum += digit
return (odd_sum - even_sum) % 11 == 0
# Test the function
assert is_divisible_by_11(12345) == False
```
This function first converts the number into a list of its digits. Then it iterates over these digits, adding them to either `odd_sum` or `even_sum` depending on their position. Finally, it checks if the difference between `odd_sum` and `even_sum` is divisible by 11.
codegen-2b. fail_base: False, fail_plus: False
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Diff(num):
if num % 11 == 0:
return True
else:
return False
print(is_Diff(12345))
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Diff(num):
if num % 11 == 0:
return True
else:
return False
print(is_Diff(12345))
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Diff(num):
if num % 11 == 0:
return True
else:
return False
print(is_Diff(12345))
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Diff(num):
if num % 11 == 0:
return True
else:
return False
print(is_Diff(12345))
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Diff(num):
if num % 11 == 0:
return True
else:
return False
print(is_Diff(12345))
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Diff(num):
if num % 11 == 0:
return True
else:
return False
print(is_Diff(12345))
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Diff(num):
if num % 11 == 0:
return True
else:
return False
print(is_Diff(12345))
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
HuggingFaceH4--starchat2-15b-v0.1. fail_base: True, fail_plus: True
def is_divisible_by_11(n):
"""
Write a python function to find whether a number is divisible by 11.
"""
# Convert the number to a string for easy manipulation
n_str = str(n)
# Initialize sum1 and sum2 to 0
sum1, sum2 = 0, 0
# Iterate over the string, adding digits at even indices to sum1 and digits at odd indices to sum2
for i in range(len(n_str)):
if i % 2 == 0:
sum1 += int(n_str[i])
else:
sum2 += int(n_str[i])
# If the difference between sum1 and sum2 is divisible by 11, return True; else, return False
return (sum1 - sum2) % 11 == 0
# Test the function
assert is_divisible_by_11(12345) == False
codegemma-7b. fail_base: True, fail_plus: True
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_diff(num):
if num % 11 == 0:
return True
else:
return False
code-llama-multi-13b. fail_base: False, fail_plus: False
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Diff(num):
if num % 11 == 0:
return True
else:
return False
def main():
print(is_Diff(12345))
print(is_Diff(123456))
print(is_Diff(1234567))
print(is_Diff(12345678))
print(is_Diff(123456789))
print(is_Diff(1234567890))
print(is_Diff(12345678901))
print(is_Diff(123456789012))
print(is_Diff(1234567890123))
print(is_Diff(12345678901234))
print(is_Diff(123456789012345))
print(is_Diff(1234567890123456))
print(is_Diff(12345678901234567))
print(is_Diff(123456789012345678))
print(is_Diff(1234567890123456789))
print(is_Diff(12345678901234567890))
print(is_Diff(123456789012345678901))
print(is_Diff(1234567890123456789012))
print(is_Diff(12345678901234567890123))
print(is_Diff(123456789012345678901234))
print(
deepseek-coder-6.7b-instruct. fail_base: True, fail_plus: True
Here is the Python function in a markdown style code block:
```python
def is_divisible_by_11(n):
"""
Write a python function to find whether a number is divisible by 11.
"""
return n % 11 == 0
# Test the function
assert is_divisible_by_11(12345) == False
```
This function works by using the modulus operator (`%`) to find the remainder of the division of `n` by 11. If the remainder is 0, then `n` is divisible by 11, so the function returns `True`. Otherwise, it returns `False`.
open-hermes-2.5-code-290k-13b. fail_base: True, fail_plus: True
def is_divisible_by_11(number):
if number % 11 == 0:
return True
else:
return False
assert is_divisible_by_11(12345) == False
codet5p-6b. fail_base: False, fail_plus: False
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Diff (num):
if num % 11 == 0:
return True
else:
return False
print(is_Diff(12345))
print(is_Diff(1234))
print(is_Diff(123))
print(is_Diff(12))
print(is_Diff(1))
print(is_Diff(0))
print(is_Diff(-1))
print(is_Diff(-12))
print(is_Diff(-123))
print(is_Diff(-1234))
print(is_Diff(-12345))
print(is_Diff(-123456))
print(is_Diff(-1234567))
print(is_Diff(-12345678))
print(is_Diff(-123456789))
print(is_Diff(-1234567890))
print(is_Diff(-12345678901))
print(is_Diff(-123456789012))
print(is_Diff(-1234567890123))
print(is_Diff(-12345678901234))
print(is_Diff(-123456789012345))
print(is_Diff(-1234567890123456))
print(is_Diff(-12345678901234567))
print(is_Diff(-123456789012345678))
print(is_Diff(-1234567890123456789))
print(is_Diff(-12345678901234567890))
print(is_Diff(-123456789012345678901))
print(is_Diff(-1234567890123456789012))
print(is_Diff(-12345678901234567890123))
print(is_Diff(-123456789012345678901234))
print(is_Diff(-1234567890123456789012345))
print(is_Diff(-12345678901234567890123456))
print(is_Diff(-123456789012345678901234567))
print(is_Diff(-1234567890123456789012345678))
print(is_Diff(-123456789012345678901
codegemma-7b-it. fail_base: True, fail_plus: True
def is_DivisibleByEleven(num):
"""
Write a python function to find whether a number is divisible by 11.
assert is_DivisibleByEleven(12345) == False
"""
sum_of_even_pos = 0
sum_of_odd_pos = 0
for i in range(len(str(num))):
if i % 2 == 0:
sum_of_even_pos += int(str(num)[i])
else:
sum_of_odd_pos += int(str(num)[i])
if (sum_of_even_pos - sum_of_odd_pos) % 11 == 0:
return True
else:
return False
mistralai--Mistral-7B-Instruct-v0.2. fail_base: True, fail_plus: True
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_divisible_by_eleven(n):
"""
Returns True if the number is divisible by 11, False otherwise.
"""
if abs(sum(int(digit) for digit in str(n)) % 11 == 0:
return True
else:
return False
# Test case provided in the problem
assert is_divisible_by_eleven(12345) == False
xwincoder-34b. fail_base: True, fail_plus: True
def is_divisible_by_11(number):
return number % 11 == 0
assert is_divisible_by_11(12345) == False
wizardcoder-15b. fail_base: False, fail_plus: False
Here's the Python function to find whether a number is divisible by 11:
```python
def is_Diff(num):
if num % 11 == 0:
return True
else:
return False
```
This function takes a number as input and checks if it is divisible by 11 using the modulo operator. If the remainder is 0, then the number is divisible by 11 and the function returns True. Otherwise, it returns False.
To test the function, we can use the `assert` statement. Here's an example:
```python
assert is_Diff(12345) == False
```
This asserts that the function returns False for the input 12345. If the function returns True for this input, the assertion will fail.
code-llama-34b. fail_base: False, fail_plus: False
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Diff(num):
if num % 11 == 0:
return True
else:
return False
deepseek-coder-33b-instruct. fail_base: True, fail_plus: True
Here is the Python function to find whether a number is divisible by 11:
```python
def is_divisible_by_11(n):
"""
This function checks if a number is divisible by 11.
"""
return n % 11 == 0
# Test the function
print(is_divisible_by_11(12345)) # Output: False
```
In this function, we use the modulus operator (%) to find the remainder of the division of the number by 11. If the remainder is 0, the number is divisible by 11, so the function returns True. Otherwise, it returns False.
phi-2. fail_base: True, fail_plus: True
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Diff(num):
sum = 0
for i in str(num):
sum += int(i)
return sum % 11 == 0
assert is_Diff(12345) == False
assert is_Diff(11111) == True
assert is_Diff(22222) == False
assert is_Diff(33333) == True
assert is_Diff(44444) == False
assert is_Diff(55555) == True
assert is_Diff(66666) == False
assert is_Diff(77777) == True
assert is_Diff(88888) == False
assert is_Diff(99999) == True
assert is_Diff(11111) == False
assert is_Diff(22222) == True
assert is_Diff(33333) == False
assert is_Diff(44444) == True
assert is_Diff(55555) == False
assert is_Diff(66666) == True
assert is_Diff(77777) == False
assert is_Diff(88888) == True
assert is_Diff(99999) == False
assert is_Diff(11111) == True
assert is_Diff(22222) == False
assert is_Diff(33333) == True
assert is_Diff(44444) == False
assert is_Diff(55555) == True
assert is_Diff(66666) == False
assert is_Diff(77777) == True
assert is_Diff(88888) == False
assert is_Diff(99999) == True
assert is_Diff(11111) == False
assert is_Diff(22222) == True
assert is_Diff(33333) == False
assert is_Diff(44444) == True
assert is_Diff(55555) == False
assert is_Diff(66666) == True
assert is_Diff(77777) == False
assert is_Diff(88888) == True
assert is_Diff(99999) == False
assert is_Diff(11111) == True
assert is_Diff(22222) == False
assert is_Diff(33333) == True
assert is_Diff(44444) == False
assert is_Diff(55555) == True
assert is_Diff(66666) == False
codet5p-2b. fail_base: False, fail_plus: False
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Diff (num):
if num % 11 == 0:
return True
else:
return False
assert is_Diff(12345) == False
assert is_Diff(12345) == False
assert is_Diff(12345) == False
assert is_Diff(12345) == False
assert is_Diff(12345) == False
assert is_Diff(12345) == False
assert is_Diff(12345) == False
assert is_Diff(12345) == False
assert is_Diff(12345) == False
assert is_Diff(12345) == False
assert is_Diff(12345) == False
assert is_Diff(12345) == False
assert is_Diff(12345) == False
assert is_Diff(12345) == False
assert is_Diff(12345) == False
assert is_Diff(12345) == False
assert is_Diff(12345) == False
assert is_Diff(12345) == False
assert is_Diff(12345) == False
assert is_Diff(12345) == False
assert is_Diff(12345) == False
assert is_Diff(12345) == False
assert is_Diff(12345) == False
assert is_Diff(12345) == False
assert is_Diff(12345) == False
assert is_Diff(12345) == False
assert is_Diff(12345) == False
assert is_Diff(12345) == False
assert is_Diff(12345) == False
assert is_Diff(12345) == False
assert is_Diff(12345) == False
assert is_Diff(12345) == False
assert is_Diff(12345) == False
assert is_Diff(12345) == False
assert is_Diff(12345) == False
assert is_Diff(12345) == False
assert is_Diff(12345) == False
assert is_Diff(12345) == False
assert is_Diff(12345) == False
assert is_Diff(12345) == False
assert is_Diff(12345) == False
assert is_Diff(12345) == False
assert is_Diff(12345) == False
assert is_Diff(12345) ==
bigcode--starcoder2-15b-instruct-v0.1. fail_base: True, fail_plus: True
def is_divisible_by_11(number: int) -> bool:
"""
Returns whether a number is divisible by 11.
"""
odd_digits_sum = 0
even_digits_sum = 0
for i, digit in enumerate(str(number)):
if i % 2 == 0:
even_digits_sum += int(digit)
else:
odd_digits_sum += int(digit)
return (odd_digits_sum - even_digits_sum) % 11 == 0
codegemma-2b. fail_base: False, fail_plus: False
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Diff(num):
if num % 11 == 0:
return True
else:
return False
white-rabbit-neo-33b-v1. fail_base: True, fail_plus: True
def is_divisible_by_11(number):
# Convert the number to a string to iterate over its digits
number_str = str(number)
# Initialize the alternating sum of digits
alternating_sum = 0
# Iterate over the digits of the number
for i in range(len(number_str)):
# If the index is even, add the digit to the alternating sum
if i % 2 == 0:
alternating_sum += int(number_str[i])
# If the index is odd, subtract the digit from the alternating sum
else:
alternating_sum -= int(number_str[i])
# If the alternating sum is divisible by 11, the number is divisible by 11
return alternating_sum % 11 == 0
# Test the function
assert is_divisible_by_11(12345) == False
microsoft--Phi-3-mini-4k-instruct. fail_base: True, fail_plus: True
def is_divisible_by_11(number):
"""
Check if a number is divisible by 11.
Args:
number (int): The number to check.
Returns:
bool: True if the number is divisible by 11, False otherwise.
"""
# A number is divisible by 11 if the difference between the sum of digits at even and odd positions is either 0 or a multiple of 11.
num_str = str(number)
sum_even_positions = sum(int(num_str[i]) for i in range(0, len(num_str), 2))
sum_odd_positions = sum(int(num_str[i]) for i in range(1, len(num_str), 2))
return abs(sum_even_positions - sum_odd_positions) % 11 == 0
# Test cases
assert is_divisible_by_11(12345) == False
assert is_divisible_by_11(22) == True
assert is_divisible_by_11(11) == True
assert is_divisible_by_11(121) == True
assert is_divisible_by_11(101) == False
speechless-codellama-34b. fail_base: True, fail_plus: True
def is_Divisible(num):
sum = 0
temp = num
while temp > 0:
digit = temp % 10
sum += digit
temp //= 10
return sum % 11 == 0
assert is_Divisible(12345) == False
```
Explanation:
The function `is_Divisible` takes an integer `num` as input and returns `True` if the number is divisible by 11, and `False` otherwise. The function works by calculating the sum of the digits of the number and checking if the sum is divisible by 11. If the sum is divisible by 11, then the number is divisible by 11.
In the given example, the number 12345 is not divisible by 11, so the function returns `False`.
meta-llama-3-70b-instruct. fail_base: False, fail_plus: True
def is_Diff(n):
digits = [int(d) for d in str(n)]
diff_sum = sum(digits[::2]) - sum(digits[1::2])
return diff_sum % 11 == 0
stable-code-3b. fail_base: True, fail_plus: True
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Divisible(num):
if num % 11 == 0:
return True
else:
return False
assert is_Divisible(12345) == False
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Divisible(num):
if num % 11 == 0:
return True
else:
return False
assert is_Divisible(12345) == False
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Divisible(num):
if num % 11 == 0:
return True
else:
return False
assert is_Divisible(12345) == False
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Divisible(num):
if num % 11 == 0:
return True
else:
return False
assert is_Divisible(12345) == False
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Divisible(num):
if num % 11 == 0:
return True
else:
return False
assert is_Divisible(12345) == False
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Divisible(num):
if num % 11 == 0:
return True
else:
return False
assert is_Divisible(12345) == False
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Divisible(num):
if num % 11 == 0:
return True
else:
return False
assert is_Divisible(12345) == False
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345
codegen-6b. fail_base: True, fail_plus: True
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Diff(n):
if n % 11 == 0:
return False
else:
return True
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Diff(n):
if n % 11 == 0:
return False
else:
return True
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Diff(n):
if n % 11 == 0:
return False
else:
return True
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Diff(n):
if n % 11 == 0:
return False
else:
return True
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Diff(n):
if n % 11 == 0:
return False
else:
return True
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Diff(n):
if n % 11 == 0:
return False
else:
return True
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Diff(n):
if n % 11 == 0:
return False
else:
return True
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Diff(n):
if n % 11 == 0:
return False
else:
return True
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Diff(n):
if n % 11 == 0
gpt-4-1106-preview. fail_base: True, fail_plus: True
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_divisible_by_11(number):
return number % 11 == 0
assert is_divisible_by_11(12345) == False
gemma-7b-it. fail_base: False, fail_plus: True
def is_Diff(num):
"""
Write a python function to find whether a number is divisible by 11.
Args:
num: The number to check.
Returns:
True if num is divisible by 11, False otherwise.
"""
# Convert num to a string.
num_str = str(num)
# Check if the sum of the digits in num_str is divisible by 11.
sum = 0
for digit in num_str.split():
sum += int(digit)
return sum % 11 == 0
opencodeinterpreter-ds-33b. fail_base: True, fail_plus: True
```python
def is_divisible_by_11(num):
return num % 11 == 0
# Test the function
print(is_divisible_by_11(12345)) # Output: False
openchat. fail_base: True, fail_plus: True
def is_divisible_by_11(number):
return number % 11 == 0
assert not is_divisible_by_11(12345)
speechless-starcoder2-7b. fail_base: False, fail_plus: True
def is_Diff(n):
sum1 = 0
sum2 = 0
for i in range(len(str(n))):
if i % 2 == 0:
sum1 += int(str(n)[i])
else:
sum2 += int(str(n)[i])
return (sum1 - sum2) % 11 == 0
assert is_Diff(12345) == False
wizardcoder-7b. fail_base: True, fail_plus: True
Here's a Python function that takes an integer as input and returns True if it is divisible by 11, and False otherwise:
```python
def is_divisible_by_11(num):
if num % 11 == 0:
return True
else:
return False
```
You can test it with the following code:
```python
assert is_divisible_by_11(12345) == False
```
This will pass the assertion test because 12345 is not divisible by 11.
octocoder. fail_base: False, fail_plus: False
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Diff(num):
if num % 11 == 0:
return True
else:
return False
gemma-1.1-7b-it. fail_base: True, fail_plus: True
def is_Divisible_by_11(number):
return str(number)[0] - str(number)[1] == str(number)[2] - str(number)[3]
assert is_Divisible_by_11(12345) == False
deepseek-coder-6.7b-base. fail_base: False, fail_plus: False
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Diff(num):
if num % 11 == 0:
return True
else:
return False
print(is_Diff(12345))
codegen-16b. fail_base: True, fail_plus: True
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Diff(n):
if n % 11 == 0:
return False
else:
return True
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Diff(n):
if n % 11 == 0:
return False
else:
return True
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Diff(n):
if n % 11 == 0:
return False
else:
return True
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Diff(n):
if n % 11 == 0:
return False
else:
return True
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Diff(n):
if n % 11 == 0:
return False
else:
return True
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Diff(n):
if n % 11 == 0:
return False
else:
return True
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Diff(n):
if n % 11 == 0:
return False
else:
return True
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Diff(n):
if n % 11 == 0:
return False
else:
return True
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Diff(n):
if n % 11 == 0
mistral-7b. fail_base: True, fail_plus: True
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Divisible(num):
if num % 11 == 0:
return True
else:
return False
assert is_Divisible(12345) == False
speechless-mistral-7b. fail_base: True, fail_plus: True
def is_divisible_by_eleven(n):
return n % 11 == 0
assert not is_divisible_by_eleven(12345)
```
codet5p-16b. fail_base: False, fail_plus: False
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Diff (num):
if num % 11 == 0:
return True
else:
return False
assert is_Diff (12345) == False
assert is_Diff (1234567) == True
assert is_Diff (123456789) == False
assert is_Diff (12345678910) == True
assert is_Diff (1234567891011) == True
assert is_Diff (123456789101112) == False
assert is_Diff (1234567891011121) == True
assert is_Diff (12345678910111212) == False
assert is_Diff (123456789101112121) == True
assert is_Diff (1234567891011121211) == False
assert is_Diff (12345678910111212111) == True
assert is_Diff (123456789101112121110) == False
assert is_Diff (1234567891011121211101) == True
assert is_Diff (12345678910111212111010) == False
assert is_Diff (123456789101112121110101) == True
assert is_Diff (1234567891011121211101010) == False
assert is_Diff (12345678910111212111010101) == True
assert is_Diff (123456789101112121110101010) == False
assert is_Diff (1234567891011121211101010111) == True
assert is_Diff (12345678910111212111010101111) == False
assert is_Diff (123456789101112121110101011110) == True
assert is_Diff (1234567891011121211101010111101) == False
assert is_Diff (12345678910111212111010101111010) == True
assert is_Diff (123456789101112121110101011110101) == False
assert is_Diff (1234567891011121211101010111101010) == True
assert is_Diff (12345678910111212111010101111010101) == False
assert is_Diff (12345
code-llama-13b. fail_base: True, fail_plus: True
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Divisible(num):
if num % 11 == 0:
return True
else:
return False
print(is_Divisible(12345))
print(is_Divisible(12346))
xdan-l1-chat. fail_base: True, fail_plus: True
def is_divisible_by_11(n):
if n < 0:
n = -n
sum_of_alternating_digits = 0
n_copy = n
while n_copy:
digit = n_copy % 10
n_copy //= 10
if n_copy:
sum_of_alternating_digits += (-1)**(n_copy % 2) * digit
return sum_of_alternating_digits == 0
assert is_divisible_by_11(12345) == False
solar-10.7b-instruct. fail_base: True, fail_plus: True
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Divisible_by_11(num):
# Convert the number to a string for easy manipulation
num_str = str(num)
# Calculate the difference between the sum of the alternating digits and the sum of the regular digits
diff = abs(sum(int(num_str[i]) for i in range(1, len(num_str), 2)) - sum(int(num_str[i]) for i in range(0, len(num_str), 2)))
# Return True if the difference is 0 (i.e., the number is divisible by 11)
return diff == 0
assert is_Divisible_by_11(12345) is False
gemma-2b. fail_base: True, fail_plus: True
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Diff(num):
sum = 0
for i in str(num):
sum += int(i)
if sum % 11 == 0:
return True
else:
return False
claude-3-sonnet-20240229. fail_base: False, fail_plus: True
Here's the Python function to find whether a number is divisible by 11, along with the provided test case:
```python
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff(12345) == False
"""
def is_Diff(num):
"""
Checks if a number is divisible by 11 using the divisibility rule.
Args:
num (int): The number to be checked.
Returns:
bool: True if the number is divisible by 11, False otherwise.
"""
# Convert the number to a string
num_str = str(num)
# Initialize variables for odd and even digit sums
odd_sum = 0
even_sum = 0
# Iterate over the digits and calculate odd and even sums
for i, digit in enumerate(num_str):
if i % 2 == 0:
even_sum += int(digit)
else:
odd_sum += int(digit)
# Check if the difference between odd and even sums is divisible by 11
diff = abs(odd_sum - even_sum)
return diff % 11 == 0
# Test case
assert is_Diff(12345) == False
starcoder2-15b-oci. fail_base: True, fail_plus: True
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Divisible(num):
if num % 11 == 0:
return True
else:
return False
starcoder2-3b. fail_base: False, fail_plus: False
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Diff(num):
if num % 11 == 0:
return True
else:
return False
print(is_Diff(12345))
print(is_Diff(123456))
print(is_Diff(1234567))
print(is_Diff(12345678))
print(is_Diff(123456789))
print(is_Diff(1234567890))
print(is_Diff(12345678901))
print(is_Diff(123456789012))
print(is_Diff(1234567890123))
print(is_Diff(12345678901234))
print(is_Diff(123456789012345))
print(is_Diff(1234567890123456))
print(is_Diff(12345678901234567))
print(is_Diff(123456789012345678))
print(is_Diff(1234567890123456789))
print(is_Diff(12345678901234567890))
print(is_Diff(123456789012345678901))
print(is_Diff(1234567890123456789012))
print(is_Diff(12345678901234567890123))
print(is_Diff(123456789012345678901234))
print(is_Diff(1234567890123456789012345))
speechless-starcoder2-15b. fail_base: True, fail_plus: True
def is_divisible_by_11(n):
return (sum(int(digit) for digit in str(n)[::2])) -
(sum(int(digit) for digit in str(n)[1::2]))) % 11 == 0
assert is_divisible_by_11(12345) == False
gemma-7b. fail_base: False, fail_plus: False
"""
Write a python function to find whether a number is divisible by 11.
assert is_Diff (12345) == False
"""
def is_Diff(num):
if num % 11 == 0:
return True
else:
return False
opencodeinterpreter-ds-6.7b. fail_base: True, fail_plus: True
```python
def is_divisible_by_11(n):
return n % 11 == 0
# Test the function
print(is_divisible_by_11(12345))