"""
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""
def is_undulating(n):
digits = [int(digit) for digit in str(n)]
if len(set(digits)) != 2:
return False
return all(a != b for a, b in zip(digits, digits[1:]))
[[1212121], [1991], [121]]
[[2121212121212121], [2121212121212122], [2121212121212119], [2121212121212123], [2121212121212124], [2121212121212125], [2121212121212120], [2121212121212118], [2121212121212126], [2121212121212117], [2121212121212127], [82], [40], [83], [39], [81], [2121212121212116], [2121212121212128], [2121212121212115], [41], [80], [19], [20], [42], [84], [18], [2121212121212129], [43], [21], [62], [17], [85], [2121212121212130], [79], [12], [2121212121212131], [86], [44], [52], [16], [11], [53], [63], [10], [78], [51], [61], [87], [50], [77], [54], [92], [55], [49], [22], [96], [38], [97], [56], [23], [91], [2121212121212114], [15], [93], [24], [48], [89], [60], [64], [65], [37], [76], [59], [35], [88], [2121212121212132], [58], [14], [94], [9], [47], [95], [66], [57], [36], [8], [13], [25], [45], [90], [2121212121212113], [67], [46], [7], [68], [75], [34], [2121212121212133], [2121212121212134], [26], [74]]
code-llama-multi-7b. fail_base: True, fail_plus: True
"""
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""
def is_undulating(num):
"""
:param num: int
:return: bool
"""
if num == 0:
return False
if num == 1:
return True
if num == 2:
return False
if num == 3:
return True
if num == 4:
return False
if num == 5:
return True
if num == 6:
return False
if num == 7:
return True
if num == 8:
return False
if num == 9:
return True
if num == 10:
return False
if num == 11:
return True
if num == 12:
return False
if num == 13:
return True
if num == 14:
return False
if num == 15:
return True
if num == 16:
return False
if num == 17:
return True
if num == 18:
return False
if num == 19:
return True
if num == 20:
return False
if num == 21:
return True
if num == 22:
return False
if num == 23:
return True
if num == 24:
return False
if num == 25:
return True
if num == 26:
return False
if num == 27:
return True
if num == 28:
return False
if num == 29:
return True
if num == 30:
return False
if num == 31:
return True
if num == 32:
return False
if num == 33:
return True
if num == 34:
return False
if num == 35:
return True
if num == 36:
return False
if num == 37:
return
databricks--dbrx-instruct. fail_base: True, fail_plus: True
def is_undulating(n: int) -> bool:
"""
Check whether the given number is undulating or not.
:param n: int
:return: bool
"""
if len(str(n)) < 3:
return False
increasing = (int(str(n)[0]) < int(str(n)[1])) and (int(str(n)[1]) < int(str(n)[2]))
decreasing = (int(str(n)[0]) > int(str(n)[1])) and (int(str(n)[1]) > int(str(n)[2]))
return increasing or decreasing
assert is_undulating(1212121) == True
assert is_undulating(12345) == False
assert is_undulating(54321) == False
assert is_undulating(12321) == True
CohereForAI--c4ai-command-r-plus. fail_base: True, fail_plus: True
def is_undulating(n: int) -> bool:
"""
Checks if a given number is undulating or not.
An undulating number is a number where the digits alternate between increasing and decreasing when reading from left to right.
"""
str_n = str(n)
increasing = decreasing = True
for i in range(1, len(str_n) - 1):
if str_n[i - 1] < str_n[i] and str_n[i] > str_n[i + 1]:
increasing = False
elif str_n[i - 1] > str_n[i] and str_n[i] < str_n[i + 1]:
decreasing = False
else:
return False
return not (increasing or decreasing)
```
claude-3-haiku-20240307. fail_base: False, fail_plus: True
Here's the solution wrapped in a Python markdown block:
```python
def is_undulating(num):
"""
Checks whether the given number is undulating or not.
Args:
num (int): The number to be checked.
Returns:
bool: True if the number is undulating, False otherwise.
"""
num_str = str(num)
for i in range(1, len(num_str), 2):
if int(num_str[i]) != int(num_str[i-1]) + 1 and int(num_str[i]) != int(num_str[i-1]) - 1:
return False
return True
# Example usage
assert is_undulating(1212121) == True
code-millenials-34b. fail_base: True, fail_plus: True
def is_undulating(num):
str_num = str(num)
is_increasing = False
is_decreasing = False
for i in range(len(str_num)-1):
if int(str_num[i+1]) > int(str_num[i]):
if is_decreasing:
return False
is_increasing = True
elif int(str_num[i+1]) < int(str_num[i]):
if is_increasing:
return False
is_decreasing = True
return is_increasing or is_decreasing
assert is_undulating(1212121) == True
dolphin-2.6. fail_base: False, fail_plus: True
"""
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""
def is_undulating(num):
str_num = str(num)
for i in range(1, len(str_num)):
if str_num[i] == str_num[i-1]:
return False
return True
# Test the function
assert is_undulating(1212121) == True
assert is_undulating(12321) == True
assert is_undulating(123456) == False
claude-3-opus-20240229. fail_base: False, fail_plus: True
Here's the code to solve the problem, wrapped in a markdown block:
```python
def is_undulating(num):
num_str = str(num)
for i in range(len(num_str) - 1):
if num_str[i] == num_str[i + 1]:
return False
return True
mixtral-8x7b-instruct. fail_base: True, fail_plus: True
def is_undulating(n):
"""
Check if the given number is undulating.
An undulating number is a number that alternates between two digits.
For example, 1212121 is undulating because it alternates between 1 and 2.
"""
if n == 0:
return False
prev_digit = n % 10
n //= 10
while n > 0:
current_digit = n % 1
wizardcoder-34b. fail_base: True, fail_plus: True
Here's a possible solution:
def is_undulating(num):
"""
Checks whether a number is undulating or not.
A number is said to be undulating if it starts with a digit and then alternates between increasing and decreasing digits.
For example, 1212121 is undulating because it starts with 1 and then alternates between increasing and decreasing digits.
"""
num_str = str(num)
if len(num_str) < 2:
return False
increasing = num_str[0] < num_str[1]
for i in range(1, len(num_str) - 1):
if increasing and num_str[i] > num_str[i+1]:
return False
elif not increasing and num_str[i] < num_str[i+1]:
return False
increasing = not increasing
return True
# Test the function
assert is_undulating(1212121) == True
assert is_undulating(1234543) == False
assert is_undulating(123421) == True
assert is_undulating(1234223) == False
assert is_undulating(1234567) == False
assert is_undulating(1233456) == False
assert is_undulating(12321) == True
assert is_undulating(123321) == False
assert is_undulating(12345654321) == True
assert is_undulating(123454321) == False
assert is_undulating(12345321) == False
assert is_undulating(123421) == True
assert is_undulating(12321) == True
assert is_undulating(1212121) == True
assert is_undulating(12121) == False
assert is_undulating(1234) == False
assert is_undulating(1) == False
assert is_undulating(123) == False
assert is_undulating(121) == True
assert is_undulating(1210) == False
assert is_undulating(12101) == False
assert is_undulating(121012) == False
assert is_undulating(1210123) == False
assert is_undulating(1210321) == True
assert is_undulating(123210) == False
assert is_undulating(123456789) == False
assert is_undulating(987654321) == False
assert is_undulating(9876543210) == False
assert is_undulating(1) == False
assert is_undulating(10) == False
assert is_undulating(12) == False
assert is_undulating(123) == False
assert is_undulating(1234) == False
assert is_undulating(12345) == False
assert is_undulating(123456) == False
assert is_undulating(1234567) == False
assert is_undulating(12345678) == False
assert is_undulating(123456789) == False
assert is_undulating(9876543210) == False
assert is_undulating(1234567890) == False
assert is_undulating(12345678901) == False
assert is_undulating(123456789012) == False
assert is_undulating(1234567890123) == False
assert is_undulating(12345678901234) == False
assert is_und
mixtral-8x22b-instruct-v0.1. fail_base: True, fail_plus: True
def is_undulating(n):
"""
Check if the given number is undulating or not.
An undulating number is a number that alternates between strictly increasing
and strictly decreasing digits.
"""
# Convert the number to a string for easier manipulation
n = str(n)
# Check if the number has at least two digits
if len(n) < 2:
return False
# Initialize the flag to indicate the direction of the digits
increasing = n[0] < n[1]
# Iterate through the digits starting from the second one
for i in range(1, len(n) - 1):
# Check if the direction of the digits changes
if (increasing and n[i] >= n[i + 1]) or (not increasing and n[i] <= n[i + 1]):
return False
# Update the flag to indicate the new direction of the digits
increasing = not increasing
# If we reach this point, the number is undulating
return True
# Test the function
assert is_undulating(1212121) == True
code-llama-multi-34b. fail_base: True, fail_plus: True
"""
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""
def is_undulating(number):
"""
:param number: int
:return: bool
"""
if number < 10:
return False
if number % 10 == 0:
return False
if number % 10 == 1:
return False
if number % 10 == 2:
return False
if number % 10 == 3:
return False
if number % 10 == 4:
return False
if number % 10 == 5:
return False
if number % 10 == 6:
return False
if number % 10 == 7:
return False
if number % 10 == 8:
return False
if number % 10 == 9:
return False
return True
def is_undulating_v2(number):
"""
:param number: int
:return: bool
"""
if number < 10:
return False
if number % 10 == 0:
return False
if number % 10 == 1:
return False
if number % 10 == 2:
return False
if number % 10 == 3:
return False
if number % 10 == 4:
return False
if number % 10 == 5:
return False
if number % 10 == 6:
return False
if number % 10 == 7:
return False
if number % 10 == 8:
return False
if number % 10 == 9:
return False
return True
def is_undulating_v3(number):
"""
:param number: int
:return: bool
"""
if number < 10:
return False
if number % 10 == 0:
return False
if number % 10 == 1:
return False
if number % 10 == 2:
return False
Qwen--Qwen1.5-72B-Chat. fail_base: True, fail_plus: True
def is_undulating(number):
"""
Check whether the given number is undulating or not.
An undulating number is a number where the digits alternate between higher and lower values.
:param number: int, the number to check
:return: bool, True if the number is undulating, False otherwise
"""
digits = [int(d) for d in str(number)]
if len(digits) < 3:
return False
for i in range(1, len(digits) - 1):
if (digits[i] < digits[i - 1] and digits[i] < digits[i + 1]) or (digits[i] > digits[i - 1] and digits[i] > digits[i + 1]):
return False
return True
# Test cases
assert is_undulating(1212121) == True
assert is_undulating(12321) == True
assert is_undulating(123421) == False
assert is_undulating(1111111) == False
assert is_undulating(987654321) == False
mistral-large-latest. fail_base: False, fail_plus: True
Sure, here is a Python function that checks if a given number is undulating or not. An undulating number is a number that makes a single up-down motion when read from left to right.
```python
def is_undulating(n):
# Convert the number to string
num_str = str(n)
# Check for first digit
up = num_str[0] < num_str[1]
# Check for remaining digits
for i in range(1, len(num_str) - 1):
# If the number is not undulating
if (up and num_str[i] < num_str[i + 1]) or (not up and num_str[i] > num_str[i + 1]):
return False
# If the number is flat
elif num_str[i] == num_str[i + 1]:
return False
# Change direction
up = not up
return True
# Test the function
assert is_undulating(1212121) == True
```
This function works by first converting the number to a string. It then checks each pair of adjacent digits. If the digits are equal, or if the pair does not follow the up-down pattern, the function returns False. If the function checks all pairs without returning, it returns True, indicating that the number is undulating.
codegen-2b. fail_base: True, fail_plus: True
"""
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""
def is_undulating(number):
if number == 0:
return False
if number % 2 == 0:
return False
if number % 3 == 0:
return False
if number % 5 == 0:
return False
if number % 7 == 0:
return False
if number % 11 == 0:
return False
if number % 13 == 0:
return False
if number % 17 == 0:
return False
if number % 19 == 0:
return False
if number % 23 == 0:
return False
if number % 29 == 0:
return False
if number % 31 == 0:
return False
if number % 37 == 0:
return False
if number % 41 == 0:
return False
if number % 43 == 0:
return False
if number % 47 == 0:
return False
if number % 53 == 0:
return False
if number % 59 == 0:
return False
if number % 61 == 0:
return False
if number % 67 == 0:
return False
if number % 71 == 0:
return False
if number % 73 == 0:
return False
if number % 79 == 0:
return False
if number % 83 == 0:
return False
if number % 89 == 0:
return False
if number % 97 == 0:
return False
if number % 101 == 0:
return False
if number % 103 == 0:
return False
if number % 107 == 0:
return False
if number % 109 == 0:
return False
if number % 113 == 0:
return False
if number % 127 == 0:
return False
if number % 131 == 0:
return False
if number % 137 == 0:
return False
if number % 139 == 0:
return False
if number % 149 == 0:
return False
if number % 151 == 0:
return False
if number % 157 == 0:
return False
if number % 163 == 0:
HuggingFaceH4--starchat2-15b-v0.1. fail_base: False, fail_plus: True
def is_undulating(n):
"""
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""
# Convert the number to string for easy manipulation
n_str = str(n)
# If the string has less than 3 characters, it cannot be undulating
if len(n_str) < 3:
return False
# Iterate over the string, comparing each digit with its neighbors
for i in range(1, len(n_str) - 1):
# If the current digit is equal to its neighbors, it's not undulating
if n_str[i] == n_str[i-1] or n_str[i] == n_str[i+1]:
return False
# If we've gone through the entire string without finding any equal neighbors, it's undulating
return True
# Test the function
assert is_undulating(1212121) == True
assert is_undulating(1234567) == False
assert is_undulating(1111111) == False
assert is_undulating(12321) == True
assert is_undulating(12345) == False
codegemma-7b. fail_base: False, fail_plus: True
"""
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""
def is_undulating(num):
num = str(num)
for i in range(len(num)-1):
if num[i] == num[i+1]:
return False
return True
code-llama-multi-13b. fail_base: True, fail_plus: True
"""
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""
def is_undulating(num):
"""
:param num:
:return:
"""
if num < 10:
return False
num_str = str(num)
if num_str[0] == num_str[-1]:
return False
for i in range(1, len(num_str) - 1):
if num_str[i] == num_str[i - 1] and num_str[i] == num_str[i + 1]:
return False
return True
if __name__ == '__main__':
assert is_undulating(1212121) == True
assert is_undulating(1212122) == False
assert is_undulating(121212) == False
assert is_undulating(12121212) == False
assert is_undulating(121212121) == True
assert is_undulating(1212121212) == False
assert is_undulating(12121212121) == True
assert is_undulating(121212121212) == False
assert is_undulating(1212121212121) == True
assert is_undulating(12121212121212) == False
assert is_undulating(121212121212121) == True
assert is_undulating(1212121212121212) == False
assert is_undulating(12121212121212121) == True
assert is_undulating(121212121212121212) == False
assert is_undulating(1212121212121212121) == True
assert is_undulating(12121212121
deepseek-coder-6.7b-instruct. fail_base: True, fail_plus: True
Here is the Python function to check whether the given number is undulating or not:
```python
def is_undulating(n):
n = str(n)
if len(n) < 3:
return False
diff1 = int(n[1]) - int(n[0])
for i in range(2, len(n)):
diff = int(n[i]) - int(n[i-1])
if diff != diff1:
return False
diff1 = diff
return True
# Test the function
print(is_undulating(1212121)) # Should print: True
```
This function works by first converting the number to a string. It then checks if the length of the string is less than 3, in which case it returns False because a number with less than 3 digits cannot be undulating.
Next, it calculates the difference between the first two digits of the number. This difference is stored in the variable `diff1`.
Then, it iterates over the rest of the digits in the number. For each pair of digits, it calculates the difference and checks if it is equal to `diff1`. If it is not, the function returns False. If it is, the function updates `diff1` to be the difference for the next iteration.
If the function manages to iterate over all pairs of digits without returning False, it returns True, indicating that the number is undulating.
open-hermes-2.5-code-290k-13b. fail_base: True, fail_plus: True
def is_undulating(number):
# Convert the number to a string
number_str = str(number)
# Check if the number has any repeating characters
for char in number_str:
if number_str.count(char) > 1:
return True
return False
# Test the function
assert is_undulating(1212121) == True
codet5p-6b. fail_base: True, fail_plus: True
"""
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""
def is_undulating(number):
if len(str(number)) % 2 == 0:
return False
else:
return all(str(number)[i] == str(number)[i+1] for i in range(len(str(number))//2))
print(is_undulating(1212121))
print(is_undulating(1212))
print(is_undulating(12))
print(is_undulating(1))
print(is_undulating(1212))
print(is_undulating(121212))
print(is_undulating(12121212))
print(is_undulating(1212121212))
print(is_undulating(121212121212))
print(is_undulating(12121212121212))
print(is_undulating(1212121212121212))
print(is_undulating(121212121212121212))
print(is_undulating(12121212121212121212))
print(is_undulating(1212121212121212121212))
print(is_undulating(121212121212121212121212))
print(is_undulating(12121212121212121212121212))
print(is_undulating(1212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212
codegemma-7b-it. fail_base: False, fail_plus: True
def is_undulating(num):
str_num = str(num)
for i in range(len(str_num) - 1):
if str_num[i] == str_num[i + 1]:
return False
return True
mistralai--Mistral-7B-Instruct-v0.2. fail_base: False, fail_plus: True
"""
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""
def is_undulating(num):
"""
Check if the given number is undulating or not.
An undulating number is a number where each digit is either the same as the previous digit or the next digit.
"""
if abs(int(str(num)[0]) - int(str(num)[1])) <= 1:
return True
for i in range(1, len(str(num)) - 1):
if abs(int(str(num)[i]) - int(str(num)[i+1])) > 1:
return False
return True
# Test cases
assert is_undulating(1212121) == True
assert is_undulating(111222) == True
assert is_undulating(12345) == False
xwincoder-34b. fail_base: False, fail_plus: True
def is_undulating(number):
str_number = str(number)
for i in range(len(str_number) - 1):
if str_number[i] == str_number[i + 1]:
return False
return True
assert is_undulating(1212121) == True
wizardcoder-15b. fail_base: True, fail_plus: True
Here's the Python script for the given problem:
```python
def is_undulating(num):
# Convert the number to a string and reverse it
num_str = str(num)[::-1]
# Check if the number is the same as its reverse
if num_str == str(num):
return False
# Check if the number is the same as the reverse of its reverse
if num_str == str(num_str)[::-1]:
return True
# If none of the above conditions are met, the number is not undulating
return False
```
The function takes a number as input and first converts it to a string and then reverses it. It then checks if the number is the same as its reverse. If it is, the number is not undulating and the function returns False. If the number is not the same as its reverse, it checks if the number is the same as the reverse of its reverse. If it is, the number is undulating and the function returns True. If none of the above conditions are met, the number is not undulating and the function returns False.
code-llama-34b. fail_base: True, fail_plus: True
"""
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""
def is_undulating(number):
number = str(number)
if len(number) < 3:
return False
if number[0] == number[-1]:
return False
for i in range(1, len(number) - 1):
if number[i] != number[i - 1] and number[i] != number[i + 1]:
return False
return True
deepseek-coder-33b-instruct. fail_base: False, fail_plus: True
Here is the Python function to check whether the given number is undulating or not:
```python
def is_undulating(n):
n = str(n)
if len(n) < 3:
return False
else:
for i in range(2, len(n)):
if n[i] != n[i-2]:
return False
return True
```
This function works by converting the number to a string, then checking if the third character from the start is the same as the first character from the start. If it is not, the function returns False. If it is, the function continues to check the rest of the string, returning False if it finds a character that is not the same as the character two positions before. If it gets through the entire string without finding any such characters, the function returns True.
phi-2. fail_base: True, fail_plus: True
"""
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""
def is_undulating(n):
n = str(n)
if len(n) < 3:
return False
for i in range(1, len(n) - 1):
if n[i - 1] == n[i + 1]:
return False
return True
assert is_undulating(1212121) == True
assert is_undulating(12121212) == False
assert is_undulating(1212121212) == False
assert is_undulating(121212121212) == False
assert is_undulating(12121212121212) == False
assert is_undulating(1212121212121212) == False
assert is_undulating(121212121212121212) == False
assert is_undulating(12121212121212121212) == False
assert is_undulating(1212121212121212121212) == False
assert is_undulating(121212121212121212121212) == False
assert is_undulating(12121212121212121212121212) == False
assert is_undulating(1212121212121212121212121212) == False
assert is_undulating(121212121212121212121212121212) == False
assert is_undulating(12121212121212121212121212121212) == False
assert is_undulating(1212121212121212121212121212121212) == False
assert is_undulating(121212121212121212121212121212121212) == False
assert is_undulating(12121212121212121212121212121212121212) == False
assert is_undulating(1212121212121212121212121212121212121212) == False
assert is_undulating(121212121212121212121212121212121212121212) == False
assert is_undulating(121212121212121212121212121212
codet5p-2b. fail_base: True, fail_plus: True
"""
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""
def is_undulating(num):
if num == 0:
return False
if num % 2 == 0:
return False
if num % 3 == 0:
return False
if num % 5 == 0:
return False
if num % 7 == 0:
return False
if num % 11 == 0:
return False
if num % 13 == 0:
return False
if num % 17 == 0:
return False
if num % 19 == 0:
return False
if num % 23 == 0:
return False
if num % 29 == 0:
return False
if num % 31 == 0:
return False
if num % 37 == 0:
return False
if num % 41 == 0:
return False
if num % 43 == 0:
return False
if num % 47 == 0:
return False
if num % 53 == 0:
return False
if num % 59 == 0:
return False
if num % 61 == 0:
return False
if num % 67 == 0:
return False
if num % 71 == 0:
return False
if num % 73 == 0:
return False
if num % 79 == 0:
return False
if num % 83 == 0:
return False
if num % 89 == 0:
return False
if num % 97 == 0:
return False
if num % 101 == 0:
return False
if num % 103 == 0:
return False
if num % 107 == 0:
return False
if num % 109 == 0:
return False
if num % 113 == 0:
return False
if num % 127 == 0:
return False
if num % 131 == 0:
return False
if num % 137 == 0:
return False
if num % 139 == 0:
return False
if num % 149 == 0:
return False
if num % 151 == 0:
return False
if num % 157 == 0:
return False
if num % 163 == 0:
bigcode--starcoder2-15b-instruct-v0.1. fail_base: False, fail_plus: True
def is_undulating(num: int) -> bool:
"""
Checks whether the given number is undulating or not.
"""
num_str = str(num)
for i in range(len(num_str) - 2):
if num_str[i] != num_str[i + 2]:
return False
return True
codegemma-2b. fail_base: True, fail_plus: True
"""
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""
def is_undulating(num):
num = str(num)
for i in range(len(num)-1):
if num[i] > num[i+1]:
return False
return True
<|file_separator|>
white-rabbit-neo-33b-v1. fail_base: True, fail_plus: True
def is_undulating(number):
number_str = str(number)
if len(number_str) < 3:
return False
for i in range(1, len(number_str) - 1):
if number_str[i] != number_str[i-1] and number_str[i] != number_str[i+1]:
return False
return True
# Test the function
assert is_undulating(1212121) == True
assert is_undulating(12345) == False
assert is_undulating(112211) == True
assert is_undulating(123456) == False
assert is_undulating(121212121) == True
microsoft--Phi-3-mini-4k-instruct. fail_base: True, fail_plus: True
def is_undulating(number):
"""
Check whether the given number is undulating or not.
An undulating number is a number that alternates between increasing and decreasing digits.
Args:
number (int): The number to check.
Returns:
bool: True if the number is undulating, False otherwise.
"""
# Convert the number to a string to easily access individual digits
num_str = str(number)
# Check if the number has less than 3 digits
if len(num_str) < 3:
return False
# Iterate through the number, comparing each digit with the next one
for i in range(len(num_str) - 1):
# Check if the current digit is greater than the next one
if int(num_str[i]) > int(num_str[i + 1]):
# If it is, check if the next digit is smaller than the one after it
if i + 2 < len(num_str) and int(num_str[i + 1]) < int(num_str[i + 2]):
continue
else:
return False
# Check if the current digit is smaller than the next one
elif int(num_str[i]) < int(num_str[i + 1]):
# If it is, check if the next digit is greater than the one after it
if i + 2 < len(num_str) and int(num_str[i + 1]) > int(num_str[i + 2]):
continue
else:
return False
return True
# Test the function
assert is_undulating(1212121) == True
assert is_undulating(123454321) == True
assert is_undulating(12345654321) == False
speechless-codellama-34b. fail_base: True, fail_plus: True
def is_undulating(num):
num_str = str(num)
for i in range(len(num_str) // 2):
if num_str[i] != num_str[-i-1]:
return False
return True
assert is_undulating(1212121) == True
```
Explanation:
The function `is_undulating` takes an integer `num` as input and returns `True` if the number is undulating and `False` otherwise. An undulating number is a number that is the same forwards and backwards.
The function first converts the number to a string using `str(num)`. It then iterates over half of the string using a `for` loop. For each iteration, it checks if the character at index `i` is equal to the character at index `-i-1` (i.e., the same character from the end of the string). If any of these characters are not equal, the function returns `False`. If the loop completes without finding any unequal characters, the function returns `True`.
The `assert` statement is used to test the function with the input `1212121`, which is an undulating number. The function should return `True`, which is why the `assert` statement should not raise an error.
meta-llama-3-70b-instruct. fail_base: False, fail_plus: True
def is_undulating(n):
digits = [int(d) for d in str(n)]
return all(digits[i] != digits[i-1] for i in range(1, len(digits)))
stable-code-3b. fail_base: True, fail_plus: True
"""
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""
def is_undulating(n):
if n < 10:
return False
if n % 10 == 0:
return False
if n % 10 == n // 10:
return True
return is_undulating(n // 10)
print(is_undulating(1212121))
print(is_undulating(1212122))
print(is_undulating(1212123))
print(is_undulating(1212124))
print(is_undulating(1212125))
print(is_undulating(1212126))
print(is_undulating(1212127))
print(is_undulating(1212128))
print(is_undulating(1212129))
print(is_undulating(1212130))
print(is_undulating(1212131))
print(is_undulating(1212132))
print(is_undulating(1212133))
print(is_undulating(1212134))
print(is_undulating(1212135))
print(is_undulating(1212136))
print(is_undulating(1212137))
print(is_undulating(1212138))
print(is_undulating(1212139))
print(is_undulating(1212140))
print(is_undulating(1212141))
print(is_undulating(1212142))
print(is_undulating(1212143))
print(is_undulating(1212144))
print(is_undulating(1212145))
print(is_undulating(1212146))
print(is_undulating(1212147))
print(is_undulating(1212148))
print(is_undulating(1212149))
print(is_undulating(1212150))
print(is_undulating(1212151))
print(is_undulating(1212152))
print(is_undulating(1212153))
print(is_undulating(1212154))
print(is_undulating(1212155))
print(is_undulating(1212156))
print(is_undulating(1212157))
print(is_undulating
codegen-6b. fail_base: True, fail_plus: True
"""
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""
def is_undulating(n):
"""
:type n: int
:rtype: bool
"""
if len(str(n)) % 2 == 0:
return False
else:
return all(int(str(n)[i]) == int(str(n)[i+1]) for i in range(len(str(n))/2))
assert is_undulating(1212121) == True
assert is_undulating(1221) == False
assert is_undulating(12) == False
assert is_undulating(1) == False
assert is_undulating(0) == False
assert is_undulating(11) == False
assert is_undulating(1212) == False
assert is_undulating(121212) == False
assert is_undulating(12121212) == False
assert is_undulating(1212121212) == False
assert is_undulating(121212121212) == False
assert is_undulating(12121212121212) == False
assert is_undulating(1212121212121212) == False
assert is_undulating(121212121212121212) == False
assert is_undulating(12121212121212121212) == False
assert is_undulating(1212121212121212121212) == False
assert is_undulating(121212121212121212121212) == False
assert is_undulating(1212121212121212121212121212) == False
assert is_undulating(12121212121212121212121212121212) == False
assert is_undulating(1212121212121212121212121212121212) == False
assert is_undulating(121212121212121212121212121212121212) == False
assert is_undulating(12121212121212121212121212121212121212) == False
assert is_undulating(1212121212121212121212121212121212121212) == False
assert
gpt-4-1106-preview. fail_base: False, fail_plus: True
"""
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""
def is_undulating(number):
str_num = str(number)
if len(str_num) < 3 or len(set(str_num)) != 2:
return False
return all(str_num[i] != str_num[i+1] for i in range(len(str_num) - 1))
# Example usage:
# print(is_undulating(1212121)) # Output: True
gemma-7b-it. fail_base: True, fail_plus: True
def is_undulating(n):
"""
Write a function to check whether the given number is undulating or not.
A number is undulating if it has at least one repeated digit and the number of occurrences of each digit is not increasing.
Args:
n: The number to check.
Returns:
True if n is undulating, False otherwise.
"""
# Convert n to a string
n_str = str(n)
# Create a dictionary to store the number of occurrences of each digit
digit_counts = {}
for digit in n_str:
if digit not in digit_counts:
digit_counts[digit] = 0
digit_counts[digit] += 1
# Check if the number of occurrences of each digit is increasing
is_undulating = False
for digit, count in digit_counts.items():
if count > 1 and count != digit_counts[str(int(digit) - 1)]:
is_undulating = True
return is_undulating
opencodeinterpreter-ds-33b. fail_base: False, fail_plus: True
```python
def is_undulating(n):
n = str(n)
length = len(n)
if length % 2 == 0:
return False
mid = length // 2
left = n[:mid]
right = n[mid+1:]
return left == right[::-1]
assert is_undulating(1212121) == True
openchat. fail_base: True, fail_plus: True
def is_undulating(num):
num_str = str(num)
for i in range(1, len(num_str)):
if num_str[i] != num_str[i - 1] + 1 and num_str[i] != num_str[i - 1] - 1:
return False
return True
assert is_undulating(1212121) == True
speechless-starcoder2-7b. fail_base: False, fail_plus: True
def is_undulating(n):
str_n = str(n)
for i in range(len(str_n) - 1):
if str_n[i] == str_n[i+1]:
return False
return True
assert is_undulating(1212121) == True
wizardcoder-7b. fail_base: False, fail_plus: True
Here's a Python function that checks whether a given number is undulating or not:
```python
def is_undulating(num):
"""
This function takes a number as input and returns True if it is undulating, else False.
An undulating number is a number where the digits alternate in their parity (odd or even).
For example, 1212121 is an undulating number, but 12321 is not.
"""
num_str = str(num)
for i in range(len(num_str) - 1):
if int(num_str[i]) % 2 == int(num_str[i+1]) % 2:
return False
return True
```
We first convert the number to a string to make it easier to work with. Then, we iterate through the digits of the number and check if the parity of each digit is the same as the parity of the next digit. If any two adjacent digits have the same parity, we return False. If we make it through the entire loop without returning False, the number is undulating and we return True.
octocoder. fail_base: True, fail_plus: True
"""
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""
def is_undulating(number):
return str(number) == str(number)[::-1]
gemma-1.1-7b-it. fail_base: False, fail_plus: True
def is_undulating(number):
return str(number)[1] != str(number)[0] and str(number)[2] != str(number)[1]
assert is_undulating(1212121) == True
deepseek-coder-6.7b-base. fail_base: False, fail_plus: True
"""
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""
def is_undulating(num):
num = str(num)
for i in range(len(num) - 1):
if num[i] == num[i + 1]:
return False
return True
print(is_undulating(1212121))
codegen-16b. fail_base: True, fail_plus: True
"""
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""
def is_undulating(n):
"""
:type n: int
:rtype: bool
"""
if len(str(n)) % 2 == 0:
return False
else:
return all(int(str(n)[i]) == int(str(n)[i+1]) for i in range(len(str(n))/2))
assert is_undulating(1212121) == True
assert is_undulating(1221) == False
assert is_undulating(12) == False
assert is_undulating(1) == False
assert is_undulating(0) == False
assert is_undulating(11) == False
assert is_undulating(1212) == False
assert is_undulating(121212) == False
assert is_undulating(12121212) == False
assert is_undulating(1212121212) == False
assert is_undulating(121212121212) == False
assert is_undulating(12121212121212) == False
assert is_undulating(1212121212121212) == False
assert is_undulating(121212121212121212) == False
assert is_undulating(12121212121212121212) == False
assert is_undulating(1212121212121212121212) == False
assert is_undulating(121212121212121212121212) == False
assert is_undulating(1212121212121212121212121212) == False
assert is_undulating(12121212121212121212121212121212) == False
assert is_undulating(1212121212121212121212121212121212) == False
assert is_undulating(121212121212121212121212121212121212) == False
assert is_undulating(12121212121212121212121212121212121212) == False
assert is_undulating(1212121212121212121212121212121212121212) == False
assert
mistral-7b. fail_base: True, fail_plus: True
"""
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""
def is_undulating(num):
if num == 0:
return False
if num == 1:
return True
if num == 2:
return True
if num == 3:
return True
if num == 4:
return True
if num == 5:
return True
if num == 6:
return True
if num == 7:
return True
if num == 8:
return True
if num == 9:
return True
if num == 10:
return True
if num == 11:
return True
if num == 12:
return True
if num == 13:
return True
if num == 14:
return True
if num == 15:
return True
if num == 16:
return True
if num == 17:
return True
if num == 18:
return True
if num == 19:
return True
if num == 20:
return True
if num == 21:
return True
if num == 22:
return True
if num == 23:
return True
if num == 24:
return True
if num == 25:
return True
if num == 26:
return True
if num == 27:
return True
if num == 28:
return True
if num == 29:
return True
if num == 30:
return True
if num == 31:
return True
if num == 32:
return True
if num == 33:
return True
if num == 34:
return True
if num == 35:
return True
if num == 36:
return True
if num == 37:
return True
if num == 38:
return True
if num ==
speechless-mistral-7b. fail_base: False, fail_plus: True
def is_undulating(n):
str_n = str(n)
for i in range(len(str_n) - 1):
if str_n[i] == str_n[i + 1]:
return False
return True
assert is_undulating(1212121) == True
```
This Python script defines a function `is_undulating` that takes an integer `n` as input. It converts the integer to a string and then checks if the string contains any consecutive identical characters. If it does, the function returns `False`, otherwise it returns `True`. The assert statement at the end checks if the function correctly identifies the number 1212121 as undulating.
codet5p-16b. fail_base: True, fail_plus: True
"""
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""
def is_undulating(n):
n = str(n)
if len(n) == 1:
return False
else:
for i in range(1, len(n)):
if int(n[i]) - int(n[i-1]) == int(n[i-1]) - int(n[i]):
return True
else:
return False
print(is_undulating(1212121))
print(is_undulating(1212122))
print(is_undulating(1212123))
print(is_undulating(1212124))
print(is_undulating(1212125))
print(is_undulating(1212126))
print(is_undulating(1212127))
print(is_undulating(1212128))
print(is_undulating(1212129))
print(is_undulating(1212130))
print(is_undulating(1212131))
print(is_undulating(1212132))
print(is_undulating(1212133))
print(is_undulating(1212134))
print(is_undulating(1212135))
print(is_undulating(1212136))
print(is_undulating(1212137))
print(is_undulating(1212138))
print(is_undulating(1212139))
print(is_undulating(1212140))
print(is_undulating(1212141))
print(is_undulating(1212142))
print(is_undulating(1212143))
print(is_undulating(1212144))
print(is_undulating(1212145))
print(is_undulating(1212146))
print(is_undulating(1212147))
print(is_undulating(1212148))
print(is_undulating(1212149))
print(is_undulating(1212150))
print(is_undulating(1212151))
print(is_undulating(1212152))
print(is_undulating(1212153))
print(is_undulating(1212154))
print(is_undulating
code-llama-13b. fail_base: True, fail_plus: True
"""
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""
def is_undulating(number: int) -> bool:
"""Check if number is undulating."""
if number < 10:
return False
if number % 10 == 0:
return False
if number % 10 == 1:
return False
if number % 10 == 9:
return False
if number % 10 == 8:
return False
if number % 10 == 7:
return False
if number % 10 == 6:
return False
if number % 10 == 5:
return False
if number % 10 == 4:
return False
if number % 10 == 3:
return False
if number % 10 == 2:
return False
return is_undulating(number // 10)
xdan-l1-chat. fail_base: False, fail_plus: True
def is_undulating(n):
n_str = str(n)
for i in range(1, len(n_str) - 1):
if n_str[i - 1] >= n_str[i] >= n_str[i + 1]:
return False
if n_str[i - 1] <= n_str[i] <= n_str[i + 1]:
return False
return True
# Test the function
assert is_undulating(1212121) == True
solar-10.7b-instruct. fail_base: True, fail_plus: True
"""
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""
def is_undulating(number: int) -> bool:
# Convert the integer to a string to easily iterate over its digits
number_str = str(number)
# Initialize a variable to store the direction (1 for increasing, -1 for decreasing)
direction = 1
# Iterate over the digits of the number
for i in range(1, len(number_str)):
# Compare the current digit with the previous one
if int(number_str[i - 1]) > int(number_str[i]):
# If the current digit is smaller than the previous one, and the direction is already negative, return False
if direction == -1:
return False
# Otherwise, change the direction to negative
direction *= -1
# If the current digit is larger than the previous one, and the direction is already positive, return False
elif int(number_str[i - 1]) < int(number_str[i]):
if direction == 1:
return False
direction *= -1
# If the current digit is equal to the previous one, the direction remains the same
# If we reach the end of the loop without returning False, the number is undulating
return True
assert is_undulating(1212121) == True
gemma-2b. fail_base: True, fail_plus: True
"""
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""
def is_undulating(n):
if n < 10:
return False
if n % 10 == 0:
return False
if n % 10 == 1:
return True
if n % 10 == 2:
return False
if n % 10 == 3:
return True
if n % 10 == 4:
return False
if n % 10 == 5:
return True
if n % 10 == 6:
return False
if n % 10 == 7:
return True
if n % 10 == 8:
return False
if n % 10 == 9:
return True
return False
claude-3-sonnet-20240229. fail_base: True, fail_plus: True
Here's the solution wrapped in a markdown block:
```python
def is_undulating(num):
"""
Checks if a given number is undulating.
An undulating number is a number where the digits alternate between increasing and decreasing.
Args:
num (int): The number to be checked.
Returns:
bool: True if the number is undulating, False otherwise.
"""
num_str = str(num)
increasing = None
for i in range(len(num_str) - 1):
current_diff = int(num_str[i + 1]) - int(num_str[i])
if current_diff == 0:
return False
if increasing is None:
increasing = current_diff > 0
elif (current_diff > 0) == increasing:
return False
return True
# Test cases
assert is_undulating(1212121) == True
assert is_undulating(12345) == False
assert is_undulating(54321) == False
assert is_undulating(54123) == True
assert is_undulating(1111) == False
starcoder2-15b-oci. fail_base: True, fail_plus: True
"""
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""
def is_undulating(n):
n = str(n)
if len(n) < 3:
return False
prev_diff = int(n[1]) - int(n[0])
for i in range(2, len(n)):
diff = int(n[i]) - int(n[i-1])
if diff != prev_diff:
return False
prev_diff = diff
return True
starcoder2-3b. fail_base: False, fail_plus: True
"""
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""
def is_undulating(num):
num_str = str(num)
for i in range(1, len(num_str)):
if num_str[i] == num_str[i-1]:
return False
return True
print(is_undulating(1212121))
print(is_undulating(1234567))
print(is_undulating(12345678))
print(is_undulating(123456789))
print(is_undulating(1234567890))
print(is_undulating(12345678901))
print(is_undulating(123456789012))
print(is_undulating(1234567890123))
print(is_undulating(12345678901234))
print(is_undulating(123456789012345))
print(is_undulating(1234567890123456))
print(is_undulating(12345678901234567))
print(is_undulating(123456789012345678))
print(is_undulating(1234567890123456789))
print(is_undulating(12345678901234567890))
print(is_undulating(123456789012345678901))
print(is_undulating(1234567890123456789012))
print(is_undulating(12345678901234567890123))
print(is_undulating(123456789012345678901234
speechless-starcoder2-15b. fail_base: True, fail_plus: True
def is_undulating(n):
str_n = str(n)
for i in range(len(str_n)-2):
if str_n[i] == str_n[i+1] and str_n[i+1] != str_n[i+2]:
return True
return False
assert is_undulating(1212121) == True
gemma-7b. fail_base: True, fail_plus: True
"""
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""
def is_undulating(num):
num = str(num)
if len(num) == 1:
return False
for i in range(len(num)-1):
if int(num[i]) > int(num[i+1]):
return False
return True
opencodeinterpreter-ds-6.7b. fail_base: True, fail_plus: True
```python
def is_undulating(n):
s = str(n)
for i in range(len(s)-2):
if s[i] == s[i+1] and s[i+1] == s[i+2]:
return False
return True
# Test the function
print(is_undulating(1212121))