Mbpp/92

 """
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""
 

solution

 
def is_undulating(n): 
	digits = [int(digit) for digit in str(n)]
	if len(set(digits)) != 2:
		return False
	return all(a != b for a, b in zip(digits, digits[1:]))
 

base input

 [[1212121], [1991], [121]] 

plus input

 [[2121212121212121], [2121212121212122], [2121212121212119], [2121212121212123], [2121212121212124], [2121212121212125], [2121212121212120], [2121212121212118], [2121212121212126], [2121212121212117], [2121212121212127], [82], [40], [83], [39], [81], [2121212121212116], [2121212121212128], [2121212121212115], [41], [80], [19], [20], [42], [84], [18], [2121212121212129], [43], [21], [62], [17], [85], [2121212121212130], [79], [12], [2121212121212131], [86], [44], [52], [16], [11], [53], [63], [10], [78], [51], [61], [87], [50], [77], [54], [92], [55], [49], [22], [96], [38], [97], [56], [23], [91], [2121212121212114], [15], [93], [24], [48], [89], [60], [64], [65], [37], [76], [59], [35], [88], [2121212121212132], [58], [14], [94], [9], [47], [95], [66], [57], [36], [8], [13], [25], [45], [90], [2121212121212113], [67], [46], [7], [68], [75], [34], [2121212121212133], [2121212121212134], [26], [74]] 

Generations

code-llama-multi-7b. fail_base: True, fail_plus: True

  """
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""


def is_undulating(num):
    """
    :param num: int
    :return: bool
    """
    if num == 0:
        return False
    if num == 1:
        return True
    if num == 2:
        return False
    if num == 3:
        return True
    if num == 4:
        return False
    if num == 5:
        return True
    if num == 6:
        return False
    if num == 7:
        return True
    if num == 8:
        return False
    if num == 9:
        return True
    if num == 10:
        return False
    if num == 11:
        return True
    if num == 12:
        return False
    if num == 13:
        return True
    if num == 14:
        return False
    if num == 15:
        return True
    if num == 16:
        return False
    if num == 17:
        return True
    if num == 18:
        return False
    if num == 19:
        return True
    if num == 20:
        return False
    if num == 21:
        return True
    if num == 22:
        return False
    if num == 23:
        return True
    if num == 24:
        return False
    if num == 25:
        return True
    if num == 26:
        return False
    if num == 27:
        return True
    if num == 28:
        return False
    if num == 29:
        return True
    if num == 30:
        return False
    if num == 31:
        return True
    if num == 32:
        return False
    if num == 33:
        return True
    if num == 34:
        return False
    if num == 35:
        return True
    if num == 36:
        return False
    if num == 37:
        return

databricks--dbrx-instruct. fail_base: True, fail_plus: True

  def is_undulating(n: int) -> bool:
    """
    Check whether the given number is undulating or not.
    :param n: int
    :return: bool
    """
    if len(str(n)) < 3:
        return False

    increasing = (int(str(n)[0]) < int(str(n)[1])) and (int(str(n)[1]) < int(str(n)[2]))
    decreasing = (int(str(n)[0]) > int(str(n)[1])) and (int(str(n)[1]) > int(str(n)[2]))

    return increasing or decreasing

assert is_undulating(1212121) == True
assert is_undulating(12345) == False
assert is_undulating(54321) == False
assert is_undulating(12321) == True

CohereForAI--c4ai-command-r-plus. fail_base: True, fail_plus: True

  def is_undulating(n: int) -> bool:
    """
    Checks if a given number is undulating or not.
    An undulating number is a number where the digits alternate between increasing and decreasing when reading from left to right.
    """
    str_n = str(n)
    increasing = decreasing = True

    for i in range(1, len(str_n) - 1):
        if str_n[i - 1] < str_n[i] and str_n[i] > str_n[i + 1]:
            increasing = False
        elif str_n[i - 1] > str_n[i] and str_n[i] < str_n[i + 1]:
            decreasing = False
        else:
            return False

    return not (increasing or decreasing)
```

claude-3-haiku-20240307. fail_base: False, fail_plus: True

  Here's the solution wrapped in a Python markdown block:

```python
def is_undulating(num):
    """
    Checks whether the given number is undulating or not.
    
    Args:
        num (int): The number to be checked.
        
    Returns:
        bool: True if the number is undulating, False otherwise.
    """
    num_str = str(num)
    for i in range(1, len(num_str), 2):
        if int(num_str[i]) != int(num_str[i-1]) + 1 and int(num_str[i]) != int(num_str[i-1]) - 1:
            return False
    return True

# Example usage
assert is_undulating(1212121) == True

code-millenials-34b. fail_base: True, fail_plus: True

  def is_undulating(num):
    str_num = str(num)
    is_increasing = False
    is_decreasing = False
    for i in range(len(str_num)-1):
        if int(str_num[i+1]) > int(str_num[i]):
            if is_decreasing:
                return False
            is_increasing = True
        elif int(str_num[i+1]) < int(str_num[i]):
            if is_increasing:
                return False
            is_decreasing = True
    return is_increasing or is_decreasing

assert is_undulating(1212121) == True

dolphin-2.6. fail_base: False, fail_plus: True

  """
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""
def is_undulating(num):
    str_num = str(num)
    for i in range(1, len(str_num)):
        if str_num[i] == str_num[i-1]:
            return False
    return True

# Test the function
assert is_undulating(1212121) == True
assert is_undulating(12321) == True
assert is_undulating(123456) == False

claude-3-opus-20240229. fail_base: False, fail_plus: True

  Here's the code to solve the problem, wrapped in a markdown block:

```python
def is_undulating(num):
    num_str = str(num)
    for i in range(len(num_str) - 1):
        if num_str[i] == num_str[i + 1]:
            return False
    return True

mixtral-8x7b-instruct. fail_base: True, fail_plus: True

  def is_undulating(n):
    """
    Check if the given number is undulating.
    An undulating number is a number that alternates between two digits.
    For example, 1212121 is undulating because it alternates between 1 and 2.
    """
    if n == 0:
        return False

    prev_digit = n % 10
    n //= 10
    while n > 0:
        current_digit = n % 1

wizardcoder-34b. fail_base: True, fail_plus: True

  Here's a possible solution:

def is_undulating(num):
    """
    Checks whether a number is undulating or not.
    A number is said to be undulating if it starts with a digit and then alternates between increasing and decreasing digits.
    For example, 1212121 is undulating because it starts with 1 and then alternates between increasing and decreasing digits.
    """
    num_str = str(num)
    if len(num_str) < 2:
        return False
    increasing = num_str[0] < num_str[1]
    for i in range(1, len(num_str) - 1):
        if increasing and num_str[i] > num_str[i+1]:
            return False
        elif not increasing and num_str[i] < num_str[i+1]:
            return False
        increasing = not increasing
    return True

# Test the function
assert is_undulating(1212121) == True
assert is_undulating(1234543) == False
assert is_undulating(123421) == True
assert is_undulating(1234223) == False
assert is_undulating(1234567) == False
assert is_undulating(1233456) == False
assert is_undulating(12321) == True
assert is_undulating(123321) == False
assert is_undulating(12345654321) == True
assert is_undulating(123454321) == False
assert is_undulating(12345321) == False
assert is_undulating(123421) == True
assert is_undulating(12321) == True
assert is_undulating(1212121) == True
assert is_undulating(12121) == False
assert is_undulating(1234) == False
assert is_undulating(1) == False
assert is_undulating(123) == False
assert is_undulating(121) == True
assert is_undulating(1210) == False
assert is_undulating(12101) == False
assert is_undulating(121012) == False
assert is_undulating(1210123) == False
assert is_undulating(1210321) == True
assert is_undulating(123210) == False
assert is_undulating(123456789) == False
assert is_undulating(987654321) == False
assert is_undulating(9876543210) == False
assert is_undulating(1) == False
assert is_undulating(10) == False
assert is_undulating(12) == False
assert is_undulating(123) == False
assert is_undulating(1234) == False
assert is_undulating(12345) == False
assert is_undulating(123456) == False
assert is_undulating(1234567) == False
assert is_undulating(12345678) == False
assert is_undulating(123456789) == False
assert is_undulating(9876543210) == False
assert is_undulating(1234567890) == False
assert is_undulating(12345678901) == False
assert is_undulating(123456789012) == False
assert is_undulating(1234567890123) == False
assert is_undulating(12345678901234) == False
assert is_und

mixtral-8x22b-instruct-v0.1. fail_base: True, fail_plus: True

  def is_undulating(n):
    """
    Check if the given number is undulating or not.
    An undulating number is a number that alternates between strictly increasing
    and strictly decreasing digits.
    """
    # Convert the number to a string for easier manipulation
    n = str(n)

    # Check if the number has at least two digits
    if len(n) < 2:
        return False

    # Initialize the flag to indicate the direction of the digits
    increasing = n[0] < n[1]

    # Iterate through the digits starting from the second one
    for i in range(1, len(n) - 1):
        # Check if the direction of the digits changes
        if (increasing and n[i] >= n[i + 1]) or (not increasing and n[i] <= n[i + 1]):
            return False
        # Update the flag to indicate the new direction of the digits
        increasing = not increasing

    # If we reach this point, the number is undulating
    return True

# Test the function
assert is_undulating(1212121) == True

code-llama-multi-34b. fail_base: True, fail_plus: True

  """
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""


def is_undulating(number):
    """
    :param number: int
    :return: bool
    """
    if number < 10:
        return False
    if number % 10 == 0:
        return False
    if number % 10 == 1:
        return False
    if number % 10 == 2:
        return False
    if number % 10 == 3:
        return False
    if number % 10 == 4:
        return False
    if number % 10 == 5:
        return False
    if number % 10 == 6:
        return False
    if number % 10 == 7:
        return False
    if number % 10 == 8:
        return False
    if number % 10 == 9:
        return False
    return True


def is_undulating_v2(number):
    """
    :param number: int
    :return: bool
    """
    if number < 10:
        return False
    if number % 10 == 0:
        return False
    if number % 10 == 1:
        return False
    if number % 10 == 2:
        return False
    if number % 10 == 3:
        return False
    if number % 10 == 4:
        return False
    if number % 10 == 5:
        return False
    if number % 10 == 6:
        return False
    if number % 10 == 7:
        return False
    if number % 10 == 8:
        return False
    if number % 10 == 9:
        return False
    return True


def is_undulating_v3(number):
    """
    :param number: int
    :return: bool
    """
    if number < 10:
        return False
    if number % 10 == 0:
        return False
    if number % 10 == 1:
        return False
    if number % 10 == 2:
        return False
   

Qwen--Qwen1.5-72B-Chat. fail_base: True, fail_plus: True

  def is_undulating(number):
    """
    Check whether the given number is undulating or not.
    An undulating number is a number where the digits alternate between higher and lower values.

    :param number: int, the number to check
    :return: bool, True if the number is undulating, False otherwise
    """
    digits = [int(d) for d in str(number)]
    if len(digits) < 3:
        return False
    for i in range(1, len(digits) - 1):
        if (digits[i] < digits[i - 1] and digits[i] < digits[i + 1]) or (digits[i] > digits[i - 1] and digits[i] > digits[i + 1]):
            return False
    return True

# Test cases
assert is_undulating(1212121) == True
assert is_undulating(12321) == True
assert is_undulating(123421) == False
assert is_undulating(1111111) == False
assert is_undulating(987654321) == False

mistral-large-latest. fail_base: False, fail_plus: True

  Sure, here is a Python function that checks if a given number is undulating or not. An undulating number is a number that makes a single up-down motion when read from left to right.

```python
def is_undulating(n):
    # Convert the number to string
    num_str = str(n)

    # Check for first digit
    up = num_str[0] < num_str[1]

    # Check for remaining digits
    for i in range(1, len(num_str) - 1):
        # If the number is not undulating
        if (up and num_str[i] < num_str[i + 1]) or (not up and num_str[i] > num_str[i + 1]):
            return False

        # If the number is flat
        elif num_str[i] == num_str[i + 1]:
            return False

        # Change direction
        up = not up

    return True

# Test the function
assert is_undulating(1212121) == True
```

This function works by first converting the number to a string. It then checks each pair of adjacent digits. If the digits are equal, or if the pair does not follow the up-down pattern, the function returns False. If the function checks all pairs without returning, it returns True, indicating that the number is undulating.

codegen-2b. fail_base: True, fail_plus: True

  """
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""

def is_undulating(number):
    if number == 0:
        return False
    if number % 2 == 0:
        return False
    if number % 3 == 0:
        return False
    if number % 5 == 0:
        return False
    if number % 7 == 0:
        return False
    if number % 11 == 0:
        return False
    if number % 13 == 0:
        return False
    if number % 17 == 0:
        return False
    if number % 19 == 0:
        return False
    if number % 23 == 0:
        return False
    if number % 29 == 0:
        return False
    if number % 31 == 0:
        return False
    if number % 37 == 0:
        return False
    if number % 41 == 0:
        return False
    if number % 43 == 0:
        return False
    if number % 47 == 0:
        return False
    if number % 53 == 0:
        return False
    if number % 59 == 0:
        return False
    if number % 61 == 0:
        return False
    if number % 67 == 0:
        return False
    if number % 71 == 0:
        return False
    if number % 73 == 0:
        return False
    if number % 79 == 0:
        return False
    if number % 83 == 0:
        return False
    if number % 89 == 0:
        return False
    if number % 97 == 0:
        return False
    if number % 101 == 0:
        return False
    if number % 103 == 0:
        return False
    if number % 107 == 0:
        return False
    if number % 109 == 0:
        return False
    if number % 113 == 0:
        return False
    if number % 127 == 0:
        return False
    if number % 131 == 0:
        return False
    if number % 137 == 0:
        return False
    if number % 139 == 0:
        return False
    if number % 149 == 0:
        return False
    if number % 151 == 0:
        return False
    if number % 157 == 0:
        return False
    if number % 163 == 0:
        

HuggingFaceH4--starchat2-15b-v0.1. fail_base: False, fail_plus: True

  def is_undulating(n):
    """
    Write a function to check whether the given number is undulating or not.
    assert is_undulating(1212121) == True
    """
    # Convert the number to string for easy manipulation
    n_str = str(n)
    
    # If the string has less than 3 characters, it cannot be undulating
    if len(n_str) < 3:
        return False
    
    # Iterate over the string, comparing each digit with its neighbors
    for i in range(1, len(n_str) - 1):
        # If the current digit is equal to its neighbors, it's not undulating
        if n_str[i] == n_str[i-1] or n_str[i] == n_str[i+1]:
            return False
    
    # If we've gone through the entire string without finding any equal neighbors, it's undulating
    return True

# Test the function
assert is_undulating(1212121) == True
assert is_undulating(1234567) == False
assert is_undulating(1111111) == False
assert is_undulating(12321) == True
assert is_undulating(12345) == False

codegemma-7b. fail_base: False, fail_plus: True

  """
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""

def is_undulating(num):
    num = str(num)
    for i in range(len(num)-1):
        if num[i] == num[i+1]:
            return False
    return True

code-llama-multi-13b. fail_base: True, fail_plus: True

  """
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""


def is_undulating(num):
    """
    :param num:
    :return:
    """
    if num < 10:
        return False
    num_str = str(num)
    if num_str[0] == num_str[-1]:
        return False
    for i in range(1, len(num_str) - 1):
        if num_str[i] == num_str[i - 1] and num_str[i] == num_str[i + 1]:
            return False
    return True


if __name__ == '__main__':
    assert is_undulating(1212121) == True
    assert is_undulating(1212122) == False
    assert is_undulating(121212) == False
    assert is_undulating(12121212) == False
    assert is_undulating(121212121) == True
    assert is_undulating(1212121212) == False
    assert is_undulating(12121212121) == True
    assert is_undulating(121212121212) == False
    assert is_undulating(1212121212121) == True
    assert is_undulating(12121212121212) == False
    assert is_undulating(121212121212121) == True
    assert is_undulating(1212121212121212) == False
    assert is_undulating(12121212121212121) == True
    assert is_undulating(121212121212121212) == False
    assert is_undulating(1212121212121212121) == True
    assert is_undulating(12121212121

deepseek-coder-6.7b-instruct. fail_base: True, fail_plus: True

  Here is the Python function to check whether the given number is undulating or not:

```python
def is_undulating(n):
    n = str(n)
    if len(n) < 3:
        return False
    diff1 = int(n[1]) - int(n[0])
    for i in range(2, len(n)):
        diff = int(n[i]) - int(n[i-1])
        if diff != diff1:
            return False
        diff1 = diff
    return True

# Test the function
print(is_undulating(1212121))  # Should print: True
```

This function works by first converting the number to a string. It then checks if the length of the string is less than 3, in which case it returns False because a number with less than 3 digits cannot be undulating.

Next, it calculates the difference between the first two digits of the number. This difference is stored in the variable `diff1`.

Then, it iterates over the rest of the digits in the number. For each pair of digits, it calculates the difference and checks if it is equal to `diff1`. If it is not, the function returns False. If it is, the function updates `diff1` to be the difference for the next iteration.

If the function manages to iterate over all pairs of digits without returning False, it returns True, indicating that the number is undulating.

open-hermes-2.5-code-290k-13b. fail_base: True, fail_plus: True

  
def is_undulating(number):
    # Convert the number to a string
    number_str = str(number)
    
    # Check if the number has any repeating characters
    for char in number_str:
        if number_str.count(char) > 1:
            return True
    
    return False

# Test the function
assert is_undulating(1212121) == True

codet5p-6b. fail_base: True, fail_plus: True

  """
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""


def is_undulating(number):
    if len(str(number)) % 2 == 0:
        return False
    else:
        return all(str(number)[i] == str(number)[i+1] for i in range(len(str(number))//2))

print(is_undulating(1212121))
print(is_undulating(1212))
print(is_undulating(12))
print(is_undulating(1))
print(is_undulating(1212))
print(is_undulating(121212))
print(is_undulating(12121212))
print(is_undulating(1212121212))
print(is_undulating(121212121212))
print(is_undulating(12121212121212))
print(is_undulating(1212121212121212))
print(is_undulating(121212121212121212))
print(is_undulating(12121212121212121212))
print(is_undulating(1212121212121212121212))
print(is_undulating(121212121212121212121212))
print(is_undulating(12121212121212121212121212))
print(is_undulating(1212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212

codegemma-7b-it. fail_base: False, fail_plus: True

  def is_undulating(num):
    str_num = str(num)
    for i in range(len(str_num) - 1):
        if str_num[i] == str_num[i + 1]:
            return False
    return True

mistralai--Mistral-7B-Instruct-v0.2. fail_base: False, fail_plus: True

  """
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""
def is_undulating(num):
    """
    Check if the given number is undulating or not.
    An undulating number is a number where each digit is either the same as the previous digit or the next digit.
    """
    if abs(int(str(num)[0]) - int(str(num)[1])) <= 1:
        return True
    for i in range(1, len(str(num)) - 1):
        if abs(int(str(num)[i]) - int(str(num)[i+1])) > 1:
            return False
    return True

# Test cases
assert is_undulating(1212121) == True
assert is_undulating(111222) == True
assert is_undulating(12345) == False

xwincoder-34b. fail_base: False, fail_plus: True

  def is_undulating(number):
    str_number = str(number)
    for i in range(len(str_number) - 1):
        if str_number[i] == str_number[i + 1]:
            return False
    return True

assert is_undulating(1212121) == True

wizardcoder-15b. fail_base: True, fail_plus: True

  Here's the Python script for the given problem:

```python
def is_undulating(num):
    # Convert the number to a string and reverse it
    num_str = str(num)[::-1]
    # Check if the number is the same as its reverse
    if num_str == str(num):
        return False
    # Check if the number is the same as the reverse of its reverse
    if num_str == str(num_str)[::-1]:
        return True
    # If none of the above conditions are met, the number is not undulating
    return False
```

The function takes a number as input and first converts it to a string and then reverses it. It then checks if the number is the same as its reverse. If it is, the number is not undulating and the function returns False. If the number is not the same as its reverse, it checks if the number is the same as the reverse of its reverse. If it is, the number is undulating and the function returns True. If none of the above conditions are met, the number is not undulating and the function returns False.

code-llama-34b. fail_base: True, fail_plus: True

  """
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""


def is_undulating(number):
    number = str(number)
    if len(number) < 3:
        return False

    if number[0] == number[-1]:
        return False

    for i in range(1, len(number) - 1):
        if number[i] != number[i - 1] and number[i] != number[i + 1]:
            return False

    return True

deepseek-coder-33b-instruct. fail_base: False, fail_plus: True

  Here is the Python function to check whether the given number is undulating or not:

```python
def is_undulating(n):
    n = str(n)
    if len(n) < 3:
        return False
    else:
        for i in range(2, len(n)):
            if n[i] != n[i-2]:
                return False
        return True
```

This function works by converting the number to a string, then checking if the third character from the start is the same as the first character from the start. If it is not, the function returns False. If it is, the function continues to check the rest of the string, returning False if it finds a character that is not the same as the character two positions before. If it gets through the entire string without finding any such characters, the function returns True.

phi-2. fail_base: True, fail_plus: True

  """
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""

def is_undulating(n):
    n = str(n)
    if len(n) < 3:
        return False
    for i in range(1, len(n) - 1):
        if n[i - 1] == n[i + 1]:
            return False
    return True

assert is_undulating(1212121) == True
assert is_undulating(12121212) == False
assert is_undulating(1212121212) == False
assert is_undulating(121212121212) == False
assert is_undulating(12121212121212) == False
assert is_undulating(1212121212121212) == False
assert is_undulating(121212121212121212) == False
assert is_undulating(12121212121212121212) == False
assert is_undulating(1212121212121212121212) == False
assert is_undulating(121212121212121212121212) == False
assert is_undulating(12121212121212121212121212) == False
assert is_undulating(1212121212121212121212121212) == False
assert is_undulating(121212121212121212121212121212) == False
assert is_undulating(12121212121212121212121212121212) == False
assert is_undulating(1212121212121212121212121212121212) == False
assert is_undulating(121212121212121212121212121212121212) == False
assert is_undulating(12121212121212121212121212121212121212) == False
assert is_undulating(1212121212121212121212121212121212121212) == False
assert is_undulating(121212121212121212121212121212121212121212) == False
assert is_undulating(121212121212121212121212121212

codet5p-2b. fail_base: True, fail_plus: True

  """
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""


def is_undulating(num):
    if num == 0:
        return False
    if num % 2 == 0:
        return False
    if num % 3 == 0:
        return False
    if num % 5 == 0:
        return False
    if num % 7 == 0:
        return False
    if num % 11 == 0:
        return False
    if num % 13 == 0:
        return False
    if num % 17 == 0:
        return False
    if num % 19 == 0:
        return False
    if num % 23 == 0:
        return False
    if num % 29 == 0:
        return False
    if num % 31 == 0:
        return False
    if num % 37 == 0:
        return False
    if num % 41 == 0:
        return False
    if num % 43 == 0:
        return False
    if num % 47 == 0:
        return False
    if num % 53 == 0:
        return False
    if num % 59 == 0:
        return False
    if num % 61 == 0:
        return False
    if num % 67 == 0:
        return False
    if num % 71 == 0:
        return False
    if num % 73 == 0:
        return False
    if num % 79 == 0:
        return False
    if num % 83 == 0:
        return False
    if num % 89 == 0:
        return False
    if num % 97 == 0:
        return False
    if num % 101 == 0:
        return False
    if num % 103 == 0:
        return False
    if num % 107 == 0:
        return False
    if num % 109 == 0:
        return False
    if num % 113 == 0:
        return False
    if num % 127 == 0:
        return False
    if num % 131 == 0:
        return False
    if num % 137 == 0:
        return False
    if num % 139 == 0:
        return False
    if num % 149 == 0:
        return False
    if num % 151 == 0:
        return False
    if num % 157 == 0:
        return False
    if num % 163 == 0:
        

bigcode--starcoder2-15b-instruct-v0.1. fail_base: False, fail_plus: True

  def is_undulating(num: int) -> bool:
    """
    Checks whether the given number is undulating or not.
    """
    num_str = str(num)
    for i in range(len(num_str) - 2):
        if num_str[i] != num_str[i + 2]:
            return False

    return True

codegemma-2b. fail_base: True, fail_plus: True

  """
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""

def is_undulating(num):
    num = str(num)
    for i in range(len(num)-1):
        if num[i] > num[i+1]:
            return False
    return True
<|file_separator|>

white-rabbit-neo-33b-v1. fail_base: True, fail_plus: True

  def is_undulating(number):
    number_str = str(number)
    if len(number_str) < 3:
        return False
    for i in range(1, len(number_str) - 1):
        if number_str[i] != number_str[i-1] and number_str[i] != number_str[i+1]:
            return False
    return True

# Test the function
assert is_undulating(1212121) == True
assert is_undulating(12345) == False
assert is_undulating(112211) == True
assert is_undulating(123456) == False
assert is_undulating(121212121) == True

microsoft--Phi-3-mini-4k-instruct. fail_base: True, fail_plus: True

  def is_undulating(number):
    """
    Check whether the given number is undulating or not.

    An undulating number is a number that alternates between increasing and decreasing digits.

    Args:
    number (int): The number to check.

    Returns:
    bool: True if the number is undulating, False otherwise.
    """
    # Convert the number to a string to easily access individual digits
    num_str = str(number)

    # Check if the number has less than 3 digits
    if len(num_str) < 3:
        return False

    # Iterate through the number, comparing each digit with the next one
    for i in range(len(num_str) - 1):
        # Check if the current digit is greater than the next one
        if int(num_str[i]) > int(num_str[i + 1]):
            # If it is, check if the next digit is smaller than the one after it
            if i + 2 < len(num_str) and int(num_str[i + 1]) < int(num_str[i + 2]):
                continue
            else:
                return False
        # Check if the current digit is smaller than the next one
        elif int(num_str[i]) < int(num_str[i + 1]):
            # If it is, check if the next digit is greater than the one after it
            if i + 2 < len(num_str) and int(num_str[i + 1]) > int(num_str[i + 2]):
                continue
            else:
                return False

    return True

# Test the function
assert is_undulating(1212121) == True
assert is_undulating(123454321) == True
assert is_undulating(12345654321) == False

speechless-codellama-34b. fail_base: True, fail_plus: True

  def is_undulating(num):
    num_str = str(num)
    for i in range(len(num_str) // 2):
        if num_str[i] != num_str[-i-1]:
            return False
    return True

assert is_undulating(1212121) == True
```

Explanation:
The function `is_undulating` takes an integer `num` as input and returns `True` if the number is undulating and `False` otherwise. An undulating number is a number that is the same forwards and backwards.

The function first converts the number to a string using `str(num)`. It then iterates over half of the string using a `for` loop. For each iteration, it checks if the character at index `i` is equal to the character at index `-i-1` (i.e., the same character from the end of the string). If any of these characters are not equal, the function returns `False`. If the loop completes without finding any unequal characters, the function returns `True`.

The `assert` statement is used to test the function with the input `1212121`, which is an undulating number. The function should return `True`, which is why the `assert` statement should not raise an error.

meta-llama-3-70b-instruct. fail_base: False, fail_plus: True

  def is_undulating(n):
    digits = [int(d) for d in str(n)]
    return all(digits[i] != digits[i-1] for i in range(1, len(digits)))

stable-code-3b. fail_base: True, fail_plus: True

  """
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""

def is_undulating(n):
    if n < 10:
        return False
    if n % 10 == 0:
        return False
    if n % 10 == n // 10:
        return True
    return is_undulating(n // 10)

print(is_undulating(1212121))
print(is_undulating(1212122))
print(is_undulating(1212123))
print(is_undulating(1212124))
print(is_undulating(1212125))
print(is_undulating(1212126))
print(is_undulating(1212127))
print(is_undulating(1212128))
print(is_undulating(1212129))
print(is_undulating(1212130))
print(is_undulating(1212131))
print(is_undulating(1212132))
print(is_undulating(1212133))
print(is_undulating(1212134))
print(is_undulating(1212135))
print(is_undulating(1212136))
print(is_undulating(1212137))
print(is_undulating(1212138))
print(is_undulating(1212139))
print(is_undulating(1212140))
print(is_undulating(1212141))
print(is_undulating(1212142))
print(is_undulating(1212143))
print(is_undulating(1212144))
print(is_undulating(1212145))
print(is_undulating(1212146))
print(is_undulating(1212147))
print(is_undulating(1212148))
print(is_undulating(1212149))
print(is_undulating(1212150))
print(is_undulating(1212151))
print(is_undulating(1212152))
print(is_undulating(1212153))
print(is_undulating(1212154))
print(is_undulating(1212155))
print(is_undulating(1212156))
print(is_undulating(1212157))
print(is_undulating

codegen-6b. fail_base: True, fail_plus: True

  """
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""

def is_undulating(n):
    """
    :type n: int
    :rtype: bool
    """
    if len(str(n)) % 2 == 0:
        return False
    else:
        return all(int(str(n)[i]) == int(str(n)[i+1]) for i in range(len(str(n))/2))

assert is_undulating(1212121) == True
assert is_undulating(1221) == False
assert is_undulating(12) == False
assert is_undulating(1) == False
assert is_undulating(0) == False
assert is_undulating(11) == False
assert is_undulating(1212) == False
assert is_undulating(121212) == False
assert is_undulating(12121212) == False
assert is_undulating(1212121212) == False
assert is_undulating(121212121212) == False
assert is_undulating(12121212121212) == False
assert is_undulating(1212121212121212) == False
assert is_undulating(121212121212121212) == False
assert is_undulating(12121212121212121212) == False
assert is_undulating(1212121212121212121212) == False
assert is_undulating(121212121212121212121212) == False
assert is_undulating(1212121212121212121212121212) == False
assert is_undulating(12121212121212121212121212121212) == False
assert is_undulating(1212121212121212121212121212121212) == False
assert is_undulating(121212121212121212121212121212121212) == False
assert is_undulating(12121212121212121212121212121212121212) == False
assert is_undulating(1212121212121212121212121212121212121212) == False
assert

gpt-4-1106-preview. fail_base: False, fail_plus: True

  """
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""



def is_undulating(number):
    str_num = str(number)
    if len(str_num) < 3 or len(set(str_num)) != 2:
        return False
    return all(str_num[i] != str_num[i+1] for i in range(len(str_num) - 1))

# Example usage:
# print(is_undulating(1212121))  # Output: True

gemma-7b-it. fail_base: True, fail_plus: True

  def is_undulating(n):
    """
    Write a function to check whether the given number is undulating or not.

    A number is undulating if it has at least one repeated digit and the number of occurrences of each digit is not increasing.

    Args:
        n: The number to check.

    Returns:
        True if n is undulating, False otherwise.
    """

    # Convert n to a string
    n_str = str(n)

    # Create a dictionary to store the number of occurrences of each digit
    digit_counts = {}
    for digit in n_str:
        if digit not in digit_counts:
            digit_counts[digit] = 0
        digit_counts[digit] += 1

    # Check if the number of occurrences of each digit is increasing
    is_undulating = False
    for digit, count in digit_counts.items():
        if count > 1 and count != digit_counts[str(int(digit) - 1)]:
            is_undulating = True

    return is_undulating

opencodeinterpreter-ds-33b. fail_base: False, fail_plus: True

  ```python
def is_undulating(n):
    n = str(n)
    length = len(n)
    if length % 2 == 0:
        return False
    mid = length // 2
    left = n[:mid]
    right = n[mid+1:]
    return left == right[::-1]

assert is_undulating(1212121) == True

openchat. fail_base: True, fail_plus: True

  def is_undulating(num):
    num_str = str(num)
    for i in range(1, len(num_str)):
        if num_str[i] != num_str[i - 1] + 1 and num_str[i] != num_str[i - 1] - 1:
            return False
    return True

assert is_undulating(1212121) == True

speechless-starcoder2-7b. fail_base: False, fail_plus: True

  def is_undulating(n):
    str_n = str(n)
    for i in range(len(str_n) - 1):
        if str_n[i] == str_n[i+1]:
            return False
    return True

assert is_undulating(1212121) == True

wizardcoder-7b. fail_base: False, fail_plus: True

  Here's a Python function that checks whether a given number is undulating or not:

```python
def is_undulating(num):
    """
    This function takes a number as input and returns True if it is undulating, else False.
    An undulating number is a number where the digits alternate in their parity (odd or even).
    For example, 1212121 is an undulating number, but 12321 is not.
    """
    num_str = str(num)
    for i in range(len(num_str) - 1):
        if int(num_str[i]) % 2 == int(num_str[i+1]) % 2:
            return False
    return True
```

We first convert the number to a string to make it easier to work with. Then, we iterate through the digits of the number and check if the parity of each digit is the same as the parity of the next digit. If any two adjacent digits have the same parity, we return False. If we make it through the entire loop without returning False, the number is undulating and we return True. 

octocoder. fail_base: True, fail_plus: True

  """
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""



def is_undulating(number):
    return str(number) == str(number)[::-1]

gemma-1.1-7b-it. fail_base: False, fail_plus: True

  def is_undulating(number):
    return str(number)[1] != str(number)[0] and str(number)[2] != str(number)[1]


assert is_undulating(1212121) == True

deepseek-coder-6.7b-base. fail_base: False, fail_plus: True

  """
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""


def is_undulating(num):
    num = str(num)
    for i in range(len(num) - 1):
        if num[i] == num[i + 1]:
            return False
    return True


print(is_undulating(1212121))

codegen-16b. fail_base: True, fail_plus: True

  """
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""

def is_undulating(n):
    """
    :type n: int
    :rtype: bool
    """
    if len(str(n)) % 2 == 0:
        return False
    else:
        return all(int(str(n)[i]) == int(str(n)[i+1]) for i in range(len(str(n))/2))

assert is_undulating(1212121) == True
assert is_undulating(1221) == False
assert is_undulating(12) == False
assert is_undulating(1) == False
assert is_undulating(0) == False
assert is_undulating(11) == False
assert is_undulating(1212) == False
assert is_undulating(121212) == False
assert is_undulating(12121212) == False
assert is_undulating(1212121212) == False
assert is_undulating(121212121212) == False
assert is_undulating(12121212121212) == False
assert is_undulating(1212121212121212) == False
assert is_undulating(121212121212121212) == False
assert is_undulating(12121212121212121212) == False
assert is_undulating(1212121212121212121212) == False
assert is_undulating(121212121212121212121212) == False
assert is_undulating(1212121212121212121212121212) == False
assert is_undulating(12121212121212121212121212121212) == False
assert is_undulating(1212121212121212121212121212121212) == False
assert is_undulating(121212121212121212121212121212121212) == False
assert is_undulating(12121212121212121212121212121212121212) == False
assert is_undulating(1212121212121212121212121212121212121212) == False
assert

mistral-7b. fail_base: True, fail_plus: True

  """
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""


def is_undulating(num):
    if num == 0:
        return False
    if num == 1:
        return True
    if num == 2:
        return True
    if num == 3:
        return True
    if num == 4:
        return True
    if num == 5:
        return True
    if num == 6:
        return True
    if num == 7:
        return True
    if num == 8:
        return True
    if num == 9:
        return True
    if num == 10:
        return True
    if num == 11:
        return True
    if num == 12:
        return True
    if num == 13:
        return True
    if num == 14:
        return True
    if num == 15:
        return True
    if num == 16:
        return True
    if num == 17:
        return True
    if num == 18:
        return True
    if num == 19:
        return True
    if num == 20:
        return True
    if num == 21:
        return True
    if num == 22:
        return True
    if num == 23:
        return True
    if num == 24:
        return True
    if num == 25:
        return True
    if num == 26:
        return True
    if num == 27:
        return True
    if num == 28:
        return True
    if num == 29:
        return True
    if num == 30:
        return True
    if num == 31:
        return True
    if num == 32:
        return True
    if num == 33:
        return True
    if num == 34:
        return True
    if num == 35:
        return True
    if num == 36:
        return True
    if num == 37:
        return True
    if num == 38:
        return True
    if num ==

speechless-mistral-7b. fail_base: False, fail_plus: True

  def is_undulating(n):
    str_n = str(n)
    for i in range(len(str_n) - 1):
        if str_n[i] == str_n[i + 1]:
            return False
    return True

assert is_undulating(1212121) == True
```

This Python script defines a function `is_undulating` that takes an integer `n` as input. It converts the integer to a string and then checks if the string contains any consecutive identical characters. If it does, the function returns `False`, otherwise it returns `True`. The assert statement at the end checks if the function correctly identifies the number 1212121 as undulating.

codet5p-16b. fail_base: True, fail_plus: True

  """
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""


def is_undulating(n):
    n = str(n)
    if len(n) == 1:
        return False
    else:
        for i in range(1, len(n)):
            if int(n[i]) - int(n[i-1]) == int(n[i-1]) - int(n[i]):
                return True
            else:
                return False

print(is_undulating(1212121))
print(is_undulating(1212122))
print(is_undulating(1212123))
print(is_undulating(1212124))
print(is_undulating(1212125))
print(is_undulating(1212126))
print(is_undulating(1212127))
print(is_undulating(1212128))
print(is_undulating(1212129))
print(is_undulating(1212130))
print(is_undulating(1212131))
print(is_undulating(1212132))
print(is_undulating(1212133))
print(is_undulating(1212134))
print(is_undulating(1212135))
print(is_undulating(1212136))
print(is_undulating(1212137))
print(is_undulating(1212138))
print(is_undulating(1212139))
print(is_undulating(1212140))
print(is_undulating(1212141))
print(is_undulating(1212142))
print(is_undulating(1212143))
print(is_undulating(1212144))
print(is_undulating(1212145))
print(is_undulating(1212146))
print(is_undulating(1212147))
print(is_undulating(1212148))
print(is_undulating(1212149))
print(is_undulating(1212150))
print(is_undulating(1212151))
print(is_undulating(1212152))
print(is_undulating(1212153))
print(is_undulating(1212154))
print(is_undulating

code-llama-13b. fail_base: True, fail_plus: True

  """
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""


def is_undulating(number: int) -> bool:
    """Check if number is undulating."""
    if number < 10:
        return False
    if number % 10 == 0:
        return False
    if number % 10 == 1:
        return False
    if number % 10 == 9:
        return False
    if number % 10 == 8:
        return False
    if number % 10 == 7:
        return False
    if number % 10 == 6:
        return False
    if number % 10 == 5:
        return False
    if number % 10 == 4:
        return False
    if number % 10 == 3:
        return False
    if number % 10 == 2:
        return False
    return is_undulating(number // 10)

xdan-l1-chat. fail_base: False, fail_plus: True

  def is_undulating(n):
    n_str = str(n)
    for i in range(1, len(n_str) - 1):
        if n_str[i - 1] >= n_str[i] >= n_str[i + 1]:
            return False
        if n_str[i - 1] <= n_str[i] <= n_str[i + 1]:
            return False
    return True

# Test the function
assert is_undulating(1212121) == True

solar-10.7b-instruct. fail_base: True, fail_plus: True

  """
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""
def is_undulating(number: int) -> bool:
    # Convert the integer to a string to easily iterate over its digits
    number_str = str(number)

    # Initialize a variable to store the direction (1 for increasing, -1 for decreasing)
    direction = 1

    # Iterate over the digits of the number
    for i in range(1, len(number_str)):
        # Compare the current digit with the previous one
        if int(number_str[i - 1]) > int(number_str[i]):
            # If the current digit is smaller than the previous one, and the direction is already negative, return False
            if direction == -1:
                return False
            # Otherwise, change the direction to negative
            direction *= -1
        # If the current digit is larger than the previous one, and the direction is already positive, return False
        elif int(number_str[i - 1]) < int(number_str[i]):
            if direction == 1:
                return False
            direction *= -1
        # If the current digit is equal to the previous one, the direction remains the same

    # If we reach the end of the loop without returning False, the number is undulating
    return True

assert is_undulating(1212121) == True

gemma-2b. fail_base: True, fail_plus: True

  """
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""



def is_undulating(n):
    if n < 10:
        return False
    if n % 10 == 0:
        return False
    if n % 10 == 1:
        return True
    if n % 10 == 2:
        return False
    if n % 10 == 3:
        return True
    if n % 10 == 4:
        return False
    if n % 10 == 5:
        return True
    if n % 10 == 6:
        return False
    if n % 10 == 7:
        return True
    if n % 10 == 8:
        return False
    if n % 10 == 9:
        return True
    return False

claude-3-sonnet-20240229. fail_base: True, fail_plus: True

  Here's the solution wrapped in a markdown block:

```python
def is_undulating(num):
    """
    Checks if a given number is undulating.
    An undulating number is a number where the digits alternate between increasing and decreasing.

    Args:
        num (int): The number to be checked.

    Returns:
        bool: True if the number is undulating, False otherwise.
    """
    num_str = str(num)
    increasing = None

    for i in range(len(num_str) - 1):
        current_diff = int(num_str[i + 1]) - int(num_str[i])

        if current_diff == 0:
            return False

        if increasing is None:
            increasing = current_diff > 0
        elif (current_diff > 0) == increasing:
            return False

    return True

# Test cases
assert is_undulating(1212121) == True
assert is_undulating(12345) == False
assert is_undulating(54321) == False
assert is_undulating(54123) == True
assert is_undulating(1111) == False

starcoder2-15b-oci. fail_base: True, fail_plus: True

  """
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""


def is_undulating(n):
    n = str(n)
    if len(n) < 3:
        return False
    prev_diff = int(n[1]) - int(n[0])
    for i in range(2, len(n)):
        diff = int(n[i]) - int(n[i-1])
        if diff != prev_diff:
            return False
        prev_diff = diff
    return True

starcoder2-3b. fail_base: False, fail_plus: True

  """
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""

def is_undulating(num):
    num_str = str(num)
    for i in range(1, len(num_str)):
        if num_str[i] == num_str[i-1]:
            return False
    return True

print(is_undulating(1212121))
print(is_undulating(1234567))
print(is_undulating(12345678))
print(is_undulating(123456789))
print(is_undulating(1234567890))
print(is_undulating(12345678901))
print(is_undulating(123456789012))
print(is_undulating(1234567890123))
print(is_undulating(12345678901234))
print(is_undulating(123456789012345))
print(is_undulating(1234567890123456))
print(is_undulating(12345678901234567))
print(is_undulating(123456789012345678))
print(is_undulating(1234567890123456789))
print(is_undulating(12345678901234567890))
print(is_undulating(123456789012345678901))
print(is_undulating(1234567890123456789012))
print(is_undulating(12345678901234567890123))
print(is_undulating(123456789012345678901234

speechless-starcoder2-15b. fail_base: True, fail_plus: True

  def is_undulating(n):
    str_n = str(n)
    for i in range(len(str_n)-2):
        if str_n[i] == str_n[i+1] and str_n[i+1] != str_n[i+2]:
            return True
    return False

assert is_undulating(1212121) == True

gemma-7b. fail_base: True, fail_plus: True

  """
Write a function to check whether the given number is undulating or not.
assert is_undulating(1212121) == True
"""

def is_undulating(num):
    num = str(num)
    if len(num) == 1:
        return False
    for i in range(len(num)-1):
        if int(num[i]) > int(num[i+1]):
            return False
    return True

opencodeinterpreter-ds-6.7b. fail_base: True, fail_plus: True

  ```python
def is_undulating(n):
    s = str(n)
    for i in range(len(s)-2):
        if s[i] == s[i+1] and s[i+1] == s[i+2]:
            return False
    return True

# Test the function
print(is_undulating(1212121))