CRUXEval-input-T0.2: by models

Home Doc/Code


std predicted by accuracy

The typical stddev between pairs of models on this dataset as a function of the absolute accuracy.

Differences vs inconsistencies

Here is a more informative figure of the source information used to compute p-value. Any model pair to the right of the parabola is statistically different from each other at the given level. This plot shows a pretty sharp transition since there are no model pairs with a small #A_win + #B_win, which rules out significant results at a small difference in |#A_win-#B_win|. For more explanation see doc.

p-values for model pairs

The null hypothesis is that model A and B each have a 1/2 chance to win whenever they are different, ties are ignored. The p-value is the chance under the null-hypothesis to get a difference as extreme as the one observed. For all pairs of models, the significance level mainly depends on the accuracy difference as shown here. Hover over each model pair for detailed information.

Results table by model

We show 3 methods currently used for evaluating code models, raw accuracy used by benchmarks, average win-rate over all other models (used by BigCode), and Elo (Bradly-Terry coefficients following Chatbot Arena). Average win-rate always have good correlation with Elo. GPT-3.5 gets an ELO of 1000 when available, otherwise the average is 1000. std: standard deviation due to drawing examples from a population, this is the dominant term. std_i: the standard deviation due to drawing samples from the model on each example. std_total: the total standard deviation, satisfying std_total^2 = std^2 + std_i^2.

model pass1 std(E(A)) E(std(A)) std(A) N win_rate elo
gpt-4-turbo-2024-04-09+cot 75.7 1.3 0.78 1.5 2.7 36.2 1.1e+03
gpt-4o+cot 75.6 1.3 0.71 1.5 2.7 35.5 1.1e+03
gpt-4-0613+cot 75.5 1.2 0.88 1.5 10 35.2 1.1e+03
claude-3-opus-20240229+cot 73.4 1.6 0 1.6 1 35.2 1.09e+03
gpt-4-0613 69.8 1.6 0.43 1.6 10 31.2 1.08e+03
gpt-4-turbo-2024-04-09 68.5 1.6 0.43 1.6 3 30 1.07e+03
gpt-4o 65.1 1.6 0.42 1.7 3 28.2 1.06e+03
claude-3-opus-20240229 64.2 1.7 0 1.7 1 28.1 1.06e+03
gpt-3.5-turbo-0613+cot 50.3 1.4 1.1 1.8 10 17.3 997
codellama-34b+cot 50.1 1.5 0.93 1.8 10 17.7 999
codetulu-2-34b 49.2 1.6 0.69 1.8 10 15.9 999
gpt-3.5-turbo-0613 49 1.7 0.55 1.8 10 17.4 1e+03
codellama-13b+cot 47.4 1.5 0.85 1.8 10 16.1 992
codellama-34b 47.2 1.6 0.71 1.8 10 14.5 990
phind 47.2 1.7 0.61 1.8 10 15.6 992
deepseek-base-33b 46.5 1.6 0.71 1.8 10 14 988
deepseek-instruct-33b 46.5 1.6 0.65 1.8 10 15.1 990
codellama-python-34b 43.9 1.6 0.7 1.8 10 13.8 983
wizard-34b 42.7 1.6 0.6 1.7 10 13.3 975
codellama-13b 42.5 1.6 0.76 1.7 10 11.9 973
deepseek-base-6.7b 41.9 1.6 0.7 1.7 10 11.4 967
magicoder-ds-7b 41.7 1.6 0.63 1.7 10 12.1 971
codellama-7b+cot 40.4 1.5 0.95 1.7 10 12.1 961
codellama-python-13b 39.7 1.6 0.75 1.7 10 10.8 963
mixtral-8x7b 39.3 1.6 0.75 1.7 10 11 959
deepseek-instruct-6.7b 37.4 1.6 0.6 1.7 10 10.4 955
codellama-python-7b 37.3 1.6 0.65 1.7 10 10.3 956
wizard-13b 36.5 1.6 0.6 1.7 10 10 953
codellama-7b 36 1.6 0.69 1.7 10 8.99 948
mistral-7b 35 1.5 0.69 1.7 10 9.55 949
phi-2 31.6 1.5 0.7 1.6 10 8.65 934
starcoderbase-16b 31.3 1.5 0.7 1.6 10 7.44 932
starcoderbase-7b 29.7 1.5 0.65 1.6 10 7 928
deepseek-base-1.3b 27.8 1.5 0.6 1.6 10 6.58 919
deepseek-instruct-1.3b 27.2 1.5 0.55 1.6 10 7.48 922
phi-1.5 23.2 1.3 0.7 1.5 10 6.81 902
phi-1 13.1 1.1 0.41 1.2 10 3.57 867